Skip to main content
Log in

Adaptive finite element method for elliptic optimal control problems: convergence and optimality

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we consider the convergence analysis of adaptive finite element method for elliptic optimal control problems with pointwise control constraints. We use variational discretization concept to discretize the control variable and piecewise linear and continuous finite elements to approximate the state variable. Based on the well-established convergence theory of AFEM for elliptic boundary value problems, we rigorously prove the convergence and quasi-optimality of AFEM for optimal control problems with respect to the state and adjoint state variables, by using the so-called perturbation argument. Numerical experiments confirm our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Apel, T., Rösch, A., Winkler, G.: Optimal control in non-convex domains: a priori discretization error estimates. Calcolo 44, 137–158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39, 113–132 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Becker, R., Mao, S.P.: Quasi-optimality of an adaptive finite element method for an optimal control problem. Comput. Methods Appl. Math. 11, 107–128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37, 1176–1194 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y.P., Liu, W.B.: A posteriori error estimates for mixed finite element solutions of convex optimal control problems. J. Comput. Appl. Math. 211(1), 76–89 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Methods for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  10. Dai, X.Y., He, L.H., Zhou, A.H.: Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues. IMA J. Numer. Anal. 35(4), 1934–1977 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dai, X.Y., Xu, J.C., Zhou, A.H.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110, 313–355 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Demlow, A., Stevenson, R.: Convergence and quasi-optimality of an adaptive finite element method for controlling \(L^2\) errors. Numer. Math. 117(2), 185–218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gaevskaya, A., Hoppe, R.H.W., Iliash, Y., Kieweg, M.: Convergence analysis of an adaptive finite element method for distributed control problems with control constraints. In: Control of coupled partial differential equations, Internat. Ser. Numer. Math., vol. 155, pp. 47–68. Birkhäuser, Basel (2007)

  15. Grisvard, P.: Singularities in Boundary Value Problems. Masson, Paris and Springer-Verlag, Berlin (1992)

  16. He, L.H., Zhou, A.H.: Convergence and complexity of adaptive finite element methods for elliptic partial differential equations. Int. J. Numer. Anal. Model. 8(4), 615–640 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47(4), 1721–1743 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hintermüller, M., Hoppe, R.H.W., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints, ESAIM: Control Optim. Calc. Var. 14, 540–560 (2008)

    MATH  Google Scholar 

  19. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30, 45–63 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE constraints. In: Math. Model. Theo. Appl., vol. 23. Springer, New York (2009)

  22. Kohls, K., Rösch, A., Siebert, K.G.: A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52, 1832–1861 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kohls, K., Rösch, A., Siebert, K.G.: Convergence of adaptive finite elements for optimal control problems with control constraints. In: Leugering, G. et al. (eds.) Trends in PDE Constrained Optimization, Internat. Ser. Numer. Math., vol. 165, pp. 403–419 (2015)

  24. Li, R., Liu, W.B., Ma, H.P., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41(5), 1321–1349 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971)

    Book  MATH  Google Scholar 

  26. Liu, W.B., Yan, N.N.: A posteriori error analysis for convex distributed optimal control problems. Adv. Comput. Math. 15(1–4), 285–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, W.B., Yan, N.N.: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39(1), 73–99 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal problems governed by Stokes equations. SIAM J. Numer. Anal. 40, 1850–1869 (2003)

    Article  MATH  Google Scholar 

  29. Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93, 497–521 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, W.B., Yan, N.N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Science Press, Beijing (2008)

    Google Scholar 

  31. Mekchay, K., Nochetto, R.H.: Convergence of adaptive finite element methods for general second order linear elliplic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77, 227–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Verfürth, R.: A Review of a Posteriori Error Estimates and Adaptive Mesh Refinement Techniques. Wiley-Teubner, New York (1996)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two anonymous referees for their careful reviews and many helpful suggestions. The first author was supported by the National Basic Research Program of China under Grant 2012CB821204 and the National Natural Science Foundation of China under Grants 11201464 and 91530204. The second author acknowledged the support of the National Natural Science Foundation of China under Grants 11171337 and 91530204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, W., Yan, N. Adaptive finite element method for elliptic optimal control problems: convergence and optimality. Numer. Math. 135, 1121–1170 (2017). https://doi.org/10.1007/s00211-016-0827-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0827-9

Mathematics Subject Classification

Navigation