Skip to main content

Advertisement

Log in

Notch Sensitivity of Fatigue Behavior of a Hi-Nicalon™/SiC-B4C Composite at 1,200 °C in Air and in Steam

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The effect of holes on the fatigue life of a non-oxide ceramic composite processed via chemical vapor infiltration (CVI) was examined at 1,200 °C in laboratory air and in steam. The effect of holes on tensile strength at 1,200 °C was also evaluated. The composite comprised laminated woven Hi-Nicalon™ fibers in an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide. Fiber preforms had pyrolytic carbon fiber coating with boron carbon overlay applied. Unnotched specimens and specimens with a center hole having a radius to width ratio of 0.24 were tested in tension-tension fatigue at 0.1 Hz and at 1.0 Hz. The fatigue stresses ranged from 100 to 140 MPa in air and in steam. Fatigue run-out was defined as 105 cycles at 0.1 Hz and as 2 × 105 cycles at 1.0 Hz. The net-section strength was less than the unnotched ultimate tensile strength. Comparison of notched and unnotched data also revealed that the fatigue performance was notch insensitive in both air and steam environments. Composite microstructure, as well as damage and failure mechanisms were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brewer, D.: HSR/EPM combustor materials development program. Mater. Sci. Eng. A 261, 284–291 (1999)

    Article  Google Scholar 

  2. Brewer, D., Ojard, G., Gibler, M.: Ceramic matrix composite combustor liner rig test. ASME Turbo Expo 2000, Munich Germany, May 8-11, 2000, ASME Paper 2000-GT-0670 (2000).

  3. Corman, G.S., Luthra, K.: Silicon melt infiltrated ceramic composites (HiPerComp). In: Bansal, N. (ed.) Hand book of ceramic composites, pp. 99–115. Kluwer, NY (2005)

    Chapter  Google Scholar 

  4. Morscher, G.N., Ojard, G., Miller, R., Gowayed, Y., Santhosh, U., Ahmad, J., John, R.: Tensile creep and fatigue of Sylramic-iBN melt-infiltrated SiC matrix composites: retained properties, damage development, and failure mechanisms. Comp. Sci. Tech. 68, 3305–3313 (2008)

    Article  CAS  Google Scholar 

  5. Droillard, C., Lamon, J.: Fracture toughness of 2D woven SiC/SiC CVI composites with multilayered interphases. J. Am. Ceram. Soc. 79(4), 849–58 (1996)

    Article  CAS  Google Scholar 

  6. Kagawa, Y., Goto, K.: Notch sensitivity of two-dimensional woven SiC fiber-reinforced SiC matrix composite fabricated by the polymer conversion process. J. Mater. Sci. Lett. 16, 850–854 (1997)

    Article  CAS  Google Scholar 

  7. McNulty, J.C., Zok, F.W., Genin, G., Evans, A.G.: Notch-sensitivity of fiber-reinforced ceramic-matrix composites: effects of inelastic straining and volume-dependent strength. J. Am. Ceram. Soc. 82(5), 1217–1228 (1999)

    Article  CAS  Google Scholar 

  8. Mackin, T.J., Purcell, T.E., Ming, Y.H., Evans, A.G.: Notch sensitivity and stress redistribution in three ceramic-matrix composites. J. Am. Ceram. Soc. 78(7), 19–28 (1995)

    Article  Google Scholar 

  9. Mackin, T. J., Purcell, T. E.: The use of thermoelasticity to evaluate stress redistribution and notch sensitivity in ceramicmatrix composites. Exp. Tech. 19–20 (1996)

  10. Keith, W.P., Kedward, K.T.: Shear Damage Mechanisms in a Woven, Nicalon-Reinforced Ceramic-Matrix Composite. J. Am. Ceram. Soc. 80(2), 357–64 (1997)

    Article  CAS  Google Scholar 

  11. Keith, W.P., Kedward, K.T.: Notched strength of ceramic-matrix composites. Comp. Sci. Tech. 57, 631–635 (1997)

    Article  CAS  Google Scholar 

  12. Suo, Z., Ho, S., Gong, X.: Notch Ductile-to-Brittle transition due to localized inelastic band. J. Eng. Mater. Tech. 115, 319–26 (1993)

    Article  Google Scholar 

  13. He, M.Y., Wu, B., Suo, Z.: Notch-sensitivity and shear bands in brittle matrix composites. Acta Metall. Mater. 42(9), 3065–70 (1994)

    Article  Google Scholar 

  14. Gu, P.: Notch sensitivity of fiber-reinforced ceramics. Int. J. Fract. 70(3), 253–266 (1994–1995)

    Google Scholar 

  15. Sunar, K.R.: Notch-sensitive fracture behavior of a silicon carbide fiber-reinforced glass-ceramic at elevated temperature. J. Mater. Eng. Perf. 7(1), 104 (1998)

    Article  Google Scholar 

  16. McNulty, J.C., He, M.Y., Zok, F.W.: Notch sensitivity of fatigue life in a Sylramic™/SiC composite at elevated temperature. Comp. Sci. Tech. 61, 1331–38 (2001)

    Article  CAS  Google Scholar 

  17. Prewo, K.M., Batt, J.A.: The oxidative stability of carbon fibre reinforced glass-matrix composites. J. Mater. Sci. 23, 523–5271 (1988)

    Article  CAS  Google Scholar 

  18. Mah, T., Hecht, N.L., McCullum, D.E., Hoenigman, J.R., Kim, H.M., Katz, A.P., Lipsitt, H.A.: Thermal stability of SiC fibres (Nicalon). J. Mater. Sci. 19, 1191–1201 (1984)

    Article  CAS  Google Scholar 

  19. Heredia, F.E., McNulty, J.C., Zok, F.W., Evans, A.G.: An oxidation embrittlement probe for ceramic matrix composites. J. Am. Ceram. Soc. 78, 2097–100 (1995)

    Article  CAS  Google Scholar 

  20. More, K.L., Tortorelli, P.F., Ferber, M.K., Keiser, J.R.: Observations of accelerated silicon carbide recession by oxidation at high water-vapor pressures. J. Am. Ceram. Soc. 83(1), 211–213 (2000)

    Article  CAS  Google Scholar 

  21. Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Comp. Sci. Tech. 64, 155–170 (2004)

    Article  CAS  Google Scholar 

  22. Naslain, R., Pailler, R., Lamon, J.: Single- and multilayered interphases in SiC/SiC composites exposed to severe environmental conditions: an overview. Int. J. Appl. Ceram. Technol. 7(3), 263–75 (2010)

    Article  CAS  Google Scholar 

  23. Naslain, R.: SiC-matrix composites: nonbrittle ceramics for thermostructural applications. Int. J. Appl. Ceram. Technol. 2(2), 75–84 (2005)

    Article  CAS  Google Scholar 

  24. Lamouroux, F., Bertrand, S., Pailler, R., Naslain, R., Cataldi, M.: Oxidation-resistant carbon fiber reinforced ceramic-matrix composites. Comp. Sci. Tech. 59, 1073–85 (1999)

    Article  CAS  Google Scholar 

  25. Lamouroux, F., Bertrand, S., Pailler, R., Naslain, R.: A multilayer ceramic matrix for oxidation resistant carbon fibers-reinforced CMCs. Key. Eng. Matls. 164–165, 365–8 (1999)

    Article  Google Scholar 

  26. Darzens, S., Farizy, G., Vicens, J., Chermant, J.L.: Multiscale investigation of the creep behavior of SiCf-SiBC. In: Krenkel, W., et al. (eds.) High temperature ceramic matrix composites, pp. 211–217. Wiley-VCH, Weinheim (2001)

    Google Scholar 

  27. Quemard, L., Rebillat, F., Guette, A., Tawil, H., Louchet-Pouillerie, C.: Self-healing mechanisms of a SiC fiber reinforced multi-layered ceramic matrix composite in high pressure steam environments. J. Eur. Ceram. Soc. 27, 2085–2094 (2007)

    Article  CAS  Google Scholar 

  28. Carrere, P., Lamon, J.: Fatigue behavior at high temperature in air of a 2D woven SiC/SiBC with a self healing matrix. Key. Eng. Matls. 164–165, 321–4 (1999)

    Article  Google Scholar 

  29. Reynaud, P., Rouby, D., Fantozzi, G.: Cyclic fatigue behavior at high temperature of a self-healing ceramic matrix composite. Ann. Chim. Sci. Mat. 30(6), 649–58 (2005)

    Article  CAS  Google Scholar 

  30. Darzens, S., Chermant, J.L., Vicens, J., Sangleboeuf, J.C.: Understanding of the creep behavior of SiCf–SiBC composites. Scripta Mat. 47, 433–439 (2002)

    Article  CAS  Google Scholar 

  31. Carrere, P., Lamon, J.: Creep behavior of a SiC/Si-B-C composite with a self healing matrix. J. Eur. Ceram. Soc. 23, 1105–1114 (2003)

    Article  CAS  Google Scholar 

  32. Ruggles-Wrenn, M.B., Delapasse, J., Chamberlain, A.L., Lane, J.E., Cook, T.S.: Fatigue behavior of a Hi-Nicalon™/SiC-B4C composite at 1200°C in air and in steam. Mater. Sci. Eng. A 534, 119–128 (2012)

    Article  CAS  Google Scholar 

  33. Haque, A., Ahmed, L., Ramasetty, A.: Stress concentrations and notch sensitivity in woven ceramic matrix composites containing a circular hole—an experimental, analytical, and finite element study. J. Am. Ceram. Soc. 88(8), 2195–2201 (2005)

    Article  CAS  Google Scholar 

  34. Ruggles-Wrenn, M.B., Christensen, D.T., Chamberlain, A.L., Lane, J.E., Cook, T.S.: Effect of frequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix composite at 1200 °C. Comp. Sci. Tech. 71(2), 190–196 (2011)

    Article  CAS  Google Scholar 

  35. Shuler, S.F., Holmes, J.W., Wu, X., Roach, D.: Influence of loading frequency on the room-temperature fatigue of a carbon-fiber/SiC-matrix composite. J. Am. Ceram. Soc 76(9), 2327–36 (1993)

    Article  CAS  Google Scholar 

  36. Yun, H.M., DiCarlo, J.A.: Time/temperature dependent tensile strength of SiC and Al2O3-based fibers. In: Bansal, N.P., Singh, J.P. (eds.) Ceramic Transactions, Advances in Ceramic-Matrix Composites III, 74, pp. 17–26. American Ceramic Society; p, Westerville OH (1996)

    Google Scholar 

  37. Morscher, G.N., Hurst, J., Brewer, D.: Intermediate-temperature stress rupture of a woven Hi-Nicalon, BN-interphase. SiC-matrix composite in air. J. Am. Ceram. Soc. 83(6), 1441–9 (2000)

    Article  CAS  Google Scholar 

  38. Yun, H.M., DiCarlo, J.A.: Thermomechanical behavior of advanced SiC fiber multifilament tows. NASA Technical Memorandum 107366. NASA Lewis Research Center. Cleveland OH (1996)

  39. Yun, H.M., DiCarlo, J.A.: Thermomechanical characterization of SiC fiber tows and implications for CMC. NASA/TM-(1999)-209283. NASA Glenn Research Center. Cleveland OH (1999).

  40. Yun, H.M., DiCarlo, J.A.: Comparison of the tensile, creep, and rupture strength properties of stoichiometric SiC fibers. NASA/TM-(1999)-209284. NASA Glenn Research Center. Cleveland OH (1999).

  41. DiCarlo, J.A., Yun, H.M., Hurst, J.B.: Fracture mechanisms for SiC fibers and SiC/SiC composites under stress-rupture conditions at high temperatures. Appl. Math. Comp. 152, 473–481 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Ruggles-Wrenn.

Additional information

The views expressed are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense or the U. S. Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruggles-Wrenn, M.B., Kurtz, G. Notch Sensitivity of Fatigue Behavior of a Hi-Nicalon™/SiC-B4C Composite at 1,200 °C in Air and in Steam. Appl Compos Mater 20, 891–905 (2013). https://doi.org/10.1007/s10443-012-9277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-012-9277-4

Keywords

Navigation