Skip to main content
Log in

Progressive Calcification in Bicuspid Valves: A Coupled Hemodynamics and Multiscale Structural Computations

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bicuspid aortic valve (BAV) is the most common congenital heart disease. Calcific aortic valve disease (CAVD) accounts for the majority of aortic stenosis (AS) cases. Half of the patients diagnosed with AS have a BAV, which has an accelerated progression rate. This study aims to develop a computational modeling approach of both the calcification progression in BAV, and its biomechanical response incorporating fluid-structure interaction (FSI) simulations during the disease progression. The calcification is patient-specifically reconstructed from Micro-CT images of excised calcified BAV leaflets, and processed with a novel reverse calcification technique that predicts prior states of CAVD using a density-based criterion, resulting in a multilayered calcified structure. Four progressive multilayered calcified BAV models were generated: healthy, mild, moderate, and severe, and were modeled by FSI simulations during the full cardiac cycle. A valve apparatus model, composed of the excised calcified BAV leaflets, was tested in an in-vitro pulse duplicator, to validate the severe model. The healthy model was validated against echocardiography scans. Progressive AS was characterized by higher systolic jet flow velocities (2.08, 2.3, 3.37, and 3.85 m s−1), which induced intense vortices surrounding the jet, coupled with irregular recirculation backflow patterns that elevated viscous shear stresses on the leaflets. This study shed light on the fluid-structure mechanism that drives CAVD progression in BAV patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Aksenov, A., A. Dyadkin, and V. Pokhilko. Overcoming of barrier between CAD and CFD by modified finite volume method. Asme-Publications-Pvp. 377:79–83, 1998.

    CAS  Google Scholar 

  2. Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am. J. Physiol. Circ. Physiol. 296:H756–H764, 2009.

    Article  CAS  Google Scholar 

  3. Beppu, S., S. Suzuki, H. Matsuda, F. Ohmori, S. Nagata, and K. Miyatake. Rapidity of progression of aortic stenosis in patients with congenital bicuspid aortic valves. Am. J. Cardiol. 71:322–327, 1993.

    Article  CAS  Google Scholar 

  4. Bouchareb, R., M. C. Boulanger, D. Fournier, P. Pibarot, Y. Messaddeq, and P. Mathieu. Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a RhoA/ROCK-dependent mechanism. J. Mol. Cell. Cardiol. 67:49–59, 2014.

    Article  CAS  Google Scholar 

  5. Braverman, A. C., H. Güven, M. A. Beardslee, M. Makan, A. M. Kates, and M. R. Moon. The bicuspid aortic valve. Curr. Probl. Cardiol. 30:470–522, 2005.

    Article  Google Scholar 

  6. Cao, K., S. K. Atkins, A. McNally, J. Liu, and P. Sucosky. Simulations of morphotype-dependent hemodynamics in non-dilated bicuspid aortic valve aortas. J. Biomech. 2016. https://doi.org/10.1016/j.jbiomech.2016.11.024.

    Article  PubMed  Google Scholar 

  7. Cao, K., and P. Sucosky. Computational comparison of regional stress and deformation characteristics in tricuspid and bicuspid aortic valve leaflets. Int. J. Numer. Method. Biomed. Eng. 33:1–21, 2017.

    Article  CAS  Google Scholar 

  8. Ebenstein, D. M., D. Coughlin, J. Chapman, C. Li, and L. A. Pruitt. Nanomechanical properties of calcification, fibrous tissue, and hematoma from atherosclerotic plaques. J. Biomed. Mater. Res. A 91:1028–1037, 2009.

  9. Emendi, M., F. Sturla, R. P. Ghosh, M. Bianchi, F. Piatti, F. R. Pluchinotta, D. Giese, M. Lombardi, A. Redaelli, and D. Bluestein. Patient-specific bicuspid aortic valve biomechanics: a magnetic resonance imaging integrated fluid-structure interaction approach. Ann. Biomed. Eng. 2020. https://doi.org/10.1007/s10439-020-02571-4.

    Article  PubMed  Google Scholar 

  10. Fisher, C. I., J. Chen, and W. D. Merryman. Calcific nodule morphogenesis by heart valve interstitial cells is strain dependent. Biomech. Model. Mechanobiol. 12:5–17, 2013.

    Article  Google Scholar 

  11. Freeman, R. V., and C. M. Otto. Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation. 111:3316–3326, 2005.

    Article  Google Scholar 

  12. Gundiah, N., K. Kam, P. B. Matthews, J. Guccione, H. A. Dwyer, D. Saloner, T. a M. Chuter, T. S. Guy, M. B. Ratcliffe, and E. E. Tseng. Asymmetric mechanical properties of porcine aortic sinuses. Ann. Thorac. Surg. 85:1631–1638, 2008.

  13. Haj-Ali, R., G. Marom, S. Ben Zekry, M. Rosenfeld, and E. Raanani. A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. J. Biomech. 45:2392–7, 2012.

  14. Halevi, R., A. Hamdan, G. Marom, K. Lavon, S. Ben-Zekry, E. Raanani, D. Bluestein, and R. Haj-Ali. Fluid–structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans. Med. Biol. Eng. Comput. 54:1683–1694, 2016.

    Article  Google Scholar 

  15. Halevi, R., A. Hamdan, G. Marom, M. Mega, E. Raanani, and R. Haj-Ali. Progressive aortic valve calcification: three-dimensional visualization and biomechanical analysis. J. Biomech. 48:489–497, 2015.

    Article  Google Scholar 

  16. Harloff, A., A. Nussbaumer, S. Bauer, A. F. Stalder, A. Frydrychowicz, C. Weiller, J. Hennig, and M. Markl. In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. Magn. Reson. Med. 63:1529–1536, 2010.

    Article  Google Scholar 

  17. Hart, J. De, F. P. T. Baaijens, G. W. M. Peters, and P. J. G. Schreurs. A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36:699–712, 2003.

    Article  Google Scholar 

  18. Katayama, S., N. Umetani, T. Hisada, and S. Sugiura. Bicuspid aortic valves undergo excessive strain during opening: a simulation study. J. Thorac. Cardiovasc. Surg. 145:1570–1576, 2013.

    Article  Google Scholar 

  19. Kazik, H. B., H. S. Kandail, J. F. LaDisa Jr, and J. Lincoln. Molecular and mechanical mechanisms of calcification pathology induced by bicuspid aortic valve abnormalities. Front. Cardiovasc. Med. 8:1–13, 2021.

    Article  Google Scholar 

  20. Kebed, K., D. Sun, K. Addetia, V. Mor-Avi, N. Markuzon, and R. M. Lang. Measurement errors in serial echocardiographic assessments of aortic valve stenosis severity. Int. J. Cardiovasc. Imaging. 36:471–479, 2020.

    Article  Google Scholar 

  21. Lavon, K., G. Marom, M. Bianchi, R. Halevi, A. Hamdan, A. Morany, E. Raanani, D. Bluestein, and R. Haj-Ali. Biomechanical modeling of transcatheter aortic valve replacement in a stenotic bicuspid aortic valve: deployments and paravalvular leakage. Med. Biol. Eng. Comput. 57:2129–2143, 2019.

    Article  Google Scholar 

  22. Lavon, K., R. Halevi, G. Marom, S. Ben Zekry, A. Hamdan, H. J. Schäfers, E. Raanani, and R. Haj-Ali. Fluid-structure interaction models of bicuspid aortic valves: the effects of non-fused cusp angles. J. Biomech. Eng. 140:031010-031010-7, 2018.

  23. Lee, J. H., A. D. Rygg, E. M. Kolahdouz, S. Rossi, S. M. Retta, N. Duraiswamy, L. N. Scotten, B. A. Craven, and B. E. Griffith. Fluid-structure interaction models of bioprosthetic heart valve dynamics in an experimental pulse duplicator. Ann. Biomed. Eng. 48:1475–1490, 2020.

    Article  Google Scholar 

  24. Luraghi, G., F. Migliavacca, C. Chiastra, A. Rossi, B. Reimers, G. G. Stefanini, and J. F. Rodriguez Matas. Does clinical data quality affect fluid-structure interaction simulations of patient-specific stenotic aortic valve models? J. Biomech. 94:202–210, 2019.

  25. Marom, G., R. Haj-Ali, E. Raanani, H.-J. Schäfers, and M. Rosenfeld. A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root. Med. Biol. Eng. Comput. 50:173–182, 2012.

    Article  Google Scholar 

  26. Marom, G., H.-S. Kim, M. Rosenfeld, E. Raanani, and R. Haj-Ali. Fully coupled fluid-structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics. Med. Biol. Eng. Comput. 51:839–848, 2013.

    Article  Google Scholar 

  27. Martin, C., and W. Sun. Biomechanical characterization of aortic valve tissue in humans and common animal models. J. Biomed. Mater. Res. A 100 A:1591–1599, 2012.

  28. Mega, M., G. Marom, R. Halevi, A. Hamdan, D. Bluestein, and R. Haj-Ali. Imaging analysis of collagen fiber networks in cusps of porcine aortic valves: effect of their local distribution and alignment on valve functionality. Comput. Methods Biomech. Biomed. Engin. 19:1002–1008, 2016.

    Article  Google Scholar 

  29. Merryman, W.D. Mechano-potential etiologies of aortic valve disease. 43:1–14, 2011.

  30. Missirlis, Y. F., and M. Chong. Aortic valve mechanics–Part I: material properties of natural porcine aortic valves. J. Bioeng. 2:287–300, 1978.

    CAS  PubMed  Google Scholar 

  31. Mohler, E. R., F. Gannon, C. Reynolds, R. Zimmerman, M. G. Keane, and F. S. Kaplan. Bone formation and inflammation in cardiac valves. Circulation. 103:1522–1528, 2001.

    Article  Google Scholar 

  32. Nishimura, R., A. C. M. Otto, R. O. Bonow, B. a Carabello, J. P. Erwin, R. a Guyton, P. T. O’Gara, C. E. Ruiz, N. J. Skubas, P. Sorajja, T. M. Sundt, and J. D. Thomas. AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63(2438–88):2014, 2014.

    Google Scholar 

  33. Oliveira, D. M. C. de, N. Abdullah, N. C. Green, and D. M. Espino. Biomechanical assessment of bicuspid aortic valve phenotypes: a fluid-structure interaction modelling approach. Cardiovasc. Eng. Technol. 11:431–447, 2020.

    Article  Google Scholar 

  34. Sun, L., N. M. Rajamannan, and P. Sucosky. Defining the role of fluid shear stress in the expression of early signaling markers for calcific aortic valve disease. PLoS ONE 8:e84433, 2013.

  35. Wang, S. H., L. P. Lee, and J. S. Lee. A linear relation between the compressibility and density of blood. J. Acoust. Soc. Am. 109:390–396, 2001.

    Article  CAS  Google Scholar 

  36. Weinberg, E. J., F. J. Schoen, and M. R. K. Mofrad. A computational model of aging and calcification in the aortic heart valve. PLoS ONE. 4:1–10, 2009.

    Article  Google Scholar 

  37. Weinberg, E. J., P. J. Mack, F. J. Schoen, G. García-Cardeña, and M. R. Kaazempur Mofrad. Hemodynamic environments from opposing sides of human aortic valve leaflets evoke distinct endothelial phenotypes in vitro. Cardiovasc. Eng. 10:5–11, 2010.

  38. Yap, C. H., N. Saikrishnan, and A. P. Yoganathan. Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet. Biomech. Model. Mechanobiol. 11:231–244, 2012.

    Article  Google Scholar 

  39. Yoganathan, A. P., K. B. Chandran, and F. Sotiropoulos. Flow in prosthetic heart valves: state-of-the-art and future directions. Ann. Biomed. Eng. 33:1689–1694, 2005.

    Article  Google Scholar 

  40. Zhang, R., and Y. Zhang. An experimental study of pulsatile flow in a compliant aortic root model under varied cardiac outputs. Fluids. 3:71, 2018.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH-NIBIB BRP U03EB026414 grant. Author RHA acknowledges the support of the Nathan Cummings Chair of Mechanics. Author AM acknowledges the support of the Planning and Budgeting Committee – Israeli Council for Higher Education.

Conflicts of Interest

Authors KL and RH are employees of Edwards Lifesciences Ltd. Author DB has an equity interest in Polynova Cardiovascular Inc. All other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Haj-Ali.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 3789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavon, K., Morany, A., Halevi, R. et al. Progressive Calcification in Bicuspid Valves: A Coupled Hemodynamics and Multiscale Structural Computations. Ann Biomed Eng 49, 3310–3322 (2021). https://doi.org/10.1007/s10439-021-02877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02877-x

Keywords

Navigation