Skip to main content
Log in

Numerical Modeling of Nitinol Stent Oversizing in Arteries with Clinically Relevant Levels of Peripheral Arterial Disease: The Influence of Plaque Type on the Outcomes of Endovascular Therapy

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Oversizing of the Nitinol stents in the femoro-popliteal arterial tract is commonly performed by clinicians and further encouraged by stent manufacturers. However, in spite of the procedure’s supposed benefits of strong wall apposition and increased luminal gain, its effects on the mechanical behavior of arteries with peripheral arterial disease are not fully clear. In this study, finite element (FE) analyses of endovascular revascularization of an idealized artery with 70% stenosis and three different plaque types have been performed to examine the influence of Nitinol stent oversizing on the arterial stresses and acute lumen gain. The analyses included the simulation of balloon angioplasty to model plaque failure, followed by stent implantation, in which four different oversizing ratios were investigated. Results showed that balloon angioplasty was crucial in determining the stress levels of the artery prior to stent implantation and heavily affected the outcome of endovascular therapy. For all plaque types, Nitinol stent oversizing was found to produce a marginal lumen gain in contrast to a significant increase in arterial stresses. For the arteries with lightly and moderately calcified plaques, oversizing was found to be non-critical; whereas for the arteries with heavily calcified plaques, the procedure should be avoided due to a risk of tissue failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alfonso, F., R. A. Byrne, F. Rivero, and A. Kastrati. Current treatment of in-stent restenosis. J. Am. Coll. Cardiol. 63:2659–2673, 2014.

    Article  PubMed  Google Scholar 

  2. Barrett, H. E., E. M. Cunnane, E. G. Kavanagh, and M. T. Walsh. On the effect of calcification volume and configuration on the mechanical behaviour of carotid plaque tissue. J. Mech. Behav. Biomed. Mater. 56:45–56, 2016.

    Article  CAS  PubMed  Google Scholar 

  3. Boland, E. L., J. A. Grogan, C. Conway, and P. E. McHugh. Computer simulation of the mechanical behaviour of implanted biodegradable stents in a remodelling artery. Jom 68:1198–1203, 2016.

    Article  CAS  Google Scholar 

  4. Chen, H. Y., B.-K. Koo, D. L. Bhatt, and G. S. Kassab. Impact of stent mis-sizing and mis-positioning on coronary fluid wall shear and intramural stress. J. Appl. Physiol. 115:285–292, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen, H. Y., A. K. Sinha, J. S. Choy, H. Zheng, M. Sturek, B. Bigelow, D. L. Bhatt, and G. S. Kassab. Mis-sizing of stent promotes intimal hyperplasia: impact of endothelial shear and intramural stress. AJP Heart. Circ. Physiol. 301:H2254–H2263, 2011.

    Article  CAS  Google Scholar 

  6. Chiastra, C., W. Wu, B. Dickerhoff, A. Aleiou, G. Dubini, H. Otake, F. Migliavacca, and J. F. LaDisa. Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: From OCT and CT imaging to structural and hemodynamics analyses. J. Biomech. 49:2102–2111, 2015.

    Article  PubMed  Google Scholar 

  7. Cho, H., M. Nango, Y. Sakai, E. Sohgawa, K. Kageyama, S. Hamamoto, T. Kitayama, A. Yamamoto, and Y. Miki. Neointimal hyperplasia after stent placement across size-discrepant vessels in an animal study. Jpn. J. Radiol. 32:340–346, 2014.

    Article  CAS  PubMed  Google Scholar 

  8. Conway, C., J. P. McGarry, and P. E. McHugh. Modelling of atherosclerotic plaque for use in a computational test-bed for stent angioplasty. Ann. Biomed. Eng. 42:2425–2439, 2014.

    Article  CAS  PubMed  Google Scholar 

  9. Conway, C., F. Sharif, J. P. McGarry, and P. E. McHugh. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3:374–387, 2012.

    Article  Google Scholar 

  10. Cunnane, E. M., H. E. Barrett, E. G. Kavanagh, R. Mongrain, and M. T. Walsh. The influence of composition and location on the toughness of human atherosclerotic femoral plaque tissue. Acta Biomater. 31:264–275, 2016.

    Article  CAS  PubMed  Google Scholar 

  11. Cunnane, E. M., J. J. Mulvihill, H. E. Barrett, D. A. Healy, E. G. Kavanagh, S. R. Walsh, and M. T. Walsh. Mechanical, biological and structural characterization of human atherosclerotic femoral plaque tissue. Acta Biomater. 11:295–303, 2015.

    Article  CAS  PubMed  Google Scholar 

  12. Cunnane, E. M., J. J. E. Mulvihill, H. E. Barrett, M. M. Hennessy, E. G. Kavanagh, and M. T. Walsh. Mechanical properties and composition of carotid and femoral atherosclerotic plaques: a comparative study. J. Biomech. 49:3697–3704, 2016.

    Article  PubMed  Google Scholar 

  13. Cunnane, E. M., J. J. E. Mulvihill, H. E. Barrett, and M. T. Walsh. Simulation of human atherosclerotic femoral plaque tissue: the influence of plaque material model on numerical results. Biomed. Eng. Online 14:S7, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Derksen, W. J. M., J. P. P. M. De Vries, A. Vink, E. Velema, J. A. Vos, D. De Kleijn, F. L. Moll, and G. Pasterkamp. Histologic atherosclerotic plaque characteristics are associated with restenosis rates after endarterectomy of the common and superficial femoral arteries. J. Vasc. Surg. 52:592–599, 2010.

    Article  PubMed  Google Scholar 

  15. Dordoni, E., A. Meoli, W. Wu, G. Dubini, F. Migliavacca, G. Pennati, and L. Petrini. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses. Med. Eng. Phys. 36:842–849, 2014.

    Article  PubMed  Google Scholar 

  16. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.

    Article  PubMed  Google Scholar 

  17. Gökgöl, C., N. Diehm, F. R. Nezami, and P. Büchler. Nitinol stent oversizing in patients undergoing popliteal artery revascularization: a finite element study. Ann. Biomed. Eng. 43:2868–2880, 2015.

    Article  PubMed  Google Scholar 

  18. Gornik, H. L., and J. A. Beckman. Cardiology patient page. Peripheral arterial disease. Circulation 111:e169–e172, 2005.

    Article  PubMed  Google Scholar 

  19. Herisson, F., M. F. Heymann, M. Chétiveaux, C. Charrier, S. Battaglia, P. Pilet, T. Rouillon, M. Krempf, P. Lemarchand, D. Heymann, and Y. Gouëffic. Carotid and femoral atherosclerotic plaques show different morphology. Atherosclerosis 216:348–354, 2011.

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann, R., G. S. Mintz, J. J. Popma, L. F. Satler, A. D. Pichard, K. M. Kent, C. Walsh, P. Mackell, and M. B. Leon. Chronic arterial responses to stent implantation: a serial intravascular ultrasound analysis of Palmaz-Schatz stents in native coronary arteries. J. Am. Coll. Cardiol. 28:1134–1139, 1996.

    Article  CAS  PubMed  Google Scholar 

  21. Holzapfel, G. A., J. Casey, and G. Bao. Mechanics of angioplasty: wall, balloon and stent. Mech. Biol. ASME 242:141–156, 2000.

    Google Scholar 

  22. Holzapfel, G. A., G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126:657–665, 2004.

    Article  PubMed  Google Scholar 

  23. Holzapfel, G. A., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. 127:166–180, 2005.

    Article  PubMed  Google Scholar 

  24. Holzapfel, G. A., M. Stadler, and C. A. J. Schulze-Bauer. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng. 30:753–767, 2002.

    Article  PubMed  Google Scholar 

  25. Kirsch, E. C., M. S. Khangure, P. Morling, T. J. York, and W. Mcauliffe. Oversizing of self-expanding stents : influence on the development of neointimal hyperplasia of the carotid artery in a canine model. Am. J. Neuroradiol. 23:121–127, 2002.

    PubMed  Google Scholar 

  26. LaDisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. J. Appl. Physiol. 98:947–957, 2005.

    Article  PubMed  Google Scholar 

  27. Li, F., M. M. McDermott, D. Li, T. J. Carroll, D. S. Hippe, C. M. Kramer, Z. Fan, X. Zhao, T. S. Hatsukami, B. Chu, J. Wang, and C. Yuan. The association of lesion eccentricity with plaque morphology and components in the superficial femoral artery: a high-spatial-resolution, multi-contrast weighted CMR study. J. Cardiovasc. Magn. Reson. 12:37, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Loree, H. M., A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27:195–204, 1994.

    Article  CAS  PubMed  Google Scholar 

  29. Meoli, A., E. Dordoni, L. Petrini, F. Migliavacca, G. Dubini, and G. Pennati. Computational modelling of in vitro set-ups for peripheral self-expanding Nitinol stents: the importance of stent-wall interaction in the assessment of the fatigue resistance. Cardiovasc. Eng. Technol. 4:474–484, 2013.

    Article  Google Scholar 

  30. Migliavacca, F., L. Petrini, P. Massarotti, S. Schievano, F. Auricchio, and G. Dubini. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech. Model. Mechanobiol. 2:205–217, 2004.

    Article  PubMed  Google Scholar 

  31. Moreno, P. R., K. R. Purushothaman, V. Fuster, and W. N. O’Connor. Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta: implications for plaque vulnerability. Circulation 105:2504–2511, 2002.

    Article  PubMed  Google Scholar 

  32. Mulvihill, J. J., E. M. Cunnane, S. M. McHugh, E. G. Kavanagh, S. R. Walsh, and M. T. Walsh. Mechanical, biological and structural characterization of in vitro ruptured human carotid plaque tissue. Acta Biomater. 9:9027–9035, 2013.

    Article  CAS  PubMed  Google Scholar 

  33. Norgren, L., W. R. Hiatt, J. A. Dormandy, M. R. Nehler, K. A. Harris, and F. G. R. Fowkes. Inter-society consensus for the management of peripheral arterial disease (TASC II). J. Vasc. Surg. 45:S5–S67, 2007.

    Article  PubMed  Google Scholar 

  34. Petrini, L., A. Trotta, E. Dordoni, F. Migliavacca, G. Dubini, P. V. Lawford, J. N. Gosai, D. M. Ryan, D. Testi, and G. Pennati. A computational approach for the prediction of fatigue behaviour in peripheral stents: application to a clinical case. Ann. Biomed. Eng. 2015. doi:10.1007/s10439-015-1472-7.

    Google Scholar 

  35. Petrini, L., W. Wu, E. Dordoni, A. Meoli, F. Migliavacca, and G. Pennati. Fatigue behavior characterization of Nitinol for peripheral stents. Funct. Mater. Lett. 05:1250012, 2012.

    Article  Google Scholar 

  36. Piamsomboon, C., G. S. Roubin, M. W. Liu, S. S. Iyer, A. Mathur, L. S. Dean, C. R. Gomez, J. J. Vitek, N. Chattipakorn, and G. Yates. Relationship between oversizing of self-expanding stents and late loss index in carotid stenting. Cathet. Cardiovasc. Diagn. 143:139–143, 1998.

    Article  Google Scholar 

  37. Rebelo, N., R. Fu, and M. Lawrenchuk. Study of a Nitinol stent deployed into anatomically accurate artery geometry and subjected to realistic service loading. J. Mater. Eng. Perform. 18:655–663, 2009.

    Article  CAS  Google Scholar 

  38. Saguner, A. M., T. Traupe, L. Räber, N. Hess, Y. Banz, A. R. Saguner, N. Diehm, and O. M. Hess. Oversizing and restenosis with self-expanding stents in iliofemoral arteries. Cardiovasc. Intervent. Radiol. 35:906–913, 2012.

    Article  PubMed  Google Scholar 

  39. Schulze-bauer, C. A. J., P. Regitnig, and G. A. Holzapfel. Mechanics of the human femoral adventitia including the high-pressure response. Am. J. Physiol. Hear. Circ. Physiol. 282:2427–2440, 2002.

    Article  Google Scholar 

  40. Smilde, T. J., F. W. van den Berkmortel, G. H. Boers, H. Wollersheim, T. de Boo, H. van Langen, and f Stalenhoef. Carotid and femoral artery wall thickness and stiffness in patients at risk for cardiovascular disease, with special emphasis on hyperhomocysteinemia. Arterioscler. Thromb. Vasc. Biol. 18:1958–1963, 1998.

    Article  CAS  PubMed  Google Scholar 

  41. Stary, H. C., D. Blankenhorn, A. B. Chandler, S. Glagov, W. Insull, M. E. Rosenfeld, S. Schaffer, C. J. Schwartz, and W. D. Wagner. A definition of the intima of human arteries and of its atherosclerosis-prone regions. Circulation 85:391–405, 1992.

    Article  CAS  PubMed  Google Scholar 

  42. Stiegler, H., and R. Brandl. Importance of ultrasound for diagnosing periphereal arterial disease. Ultraschall Med. 30:334–374, 2009.

    Article  CAS  PubMed  Google Scholar 

  43. Stoeckel, D., A. Pelton, and T. Duerig. Self-expanding Nitinol stents: material and design considerations. Eur. Radiol. 14:292–301, 2004.

    Article  PubMed  Google Scholar 

  44. Tai, N. R., A. Giudiceandrea, H. J. Salacinski, A. M. Seifalian, and G. Hamilton. In vivo femoropopliteal arterial wall compliance in subjects with and without lower limb vascular disease. J. Vasc. Surg. 30:936–945, 1999.

    Article  CAS  PubMed  Google Scholar 

  45. Timmins, L. H., M. W. Miller, F. J. Clubb, and J. E. Moore. Increased artery wall stress post-stenting leads to greater intimal thickening. Lab. Invest. 91:955–967, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zeller, T. Current state of endovascular treatment of femoro-popliteal artery disease. Vasc. Med. 12:223–234, 2007.

    Article  PubMed  Google Scholar 

  47. Zhao, H. Q., A. Nikanorov, R. Virmani, R. Jones, E. Pacheco, and L. B. Schwartz. Late stent expansion and neointimal proliferation of oversized Nitinol stents in peripheral arteries. Cardiovasc. Intervent. Radiol. 32:720–726, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was supported by the Research Council of the Kantonsspital Aarau, the Swiss Heart Foundation and the Gotthard Schettler Foundation. The authors have no commercial, proprietary, or financial interest in any products or companies described in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Büchler.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gökgöl, C., Diehm, N. & Büchler, P. Numerical Modeling of Nitinol Stent Oversizing in Arteries with Clinically Relevant Levels of Peripheral Arterial Disease: The Influence of Plaque Type on the Outcomes of Endovascular Therapy. Ann Biomed Eng 45, 1420–1433 (2017). https://doi.org/10.1007/s10439-017-1803-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1803-y

Keywords

Navigation