Skip to main content
Log in

In Situ Quantification of Surface Chemistry in Porous Collagen Biomaterials

  • Nondestructive Characterization of Biomaterials for Tissue Engineering and Drug Delivery
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cells inside a 3D matrix (such as tissue extracellular matrix or biomaterials) sense their insoluble environment through specific binding interactions between their adhesion receptors and ligands present on the matrix surface. Despite the critical role of the insoluble matrix in cell regulation, there exist no widely-applicable methods for quantifying the chemical stimuli provided by a matrix to cells. Here, we describe a general-purpose technique for quantifying in situ the density of ligands for specific cell adhesion receptors of interest on the surface of a 3D matrix. This paper improves significantly the accuracy of the procedure introduced in a previous publication by detailed marker characterization, optimized staining, and improved data interpretation. The optimized methodology is utilized to quantify the ligands of integrins α 1 β 1, α 2 β 1 on two kinds of matched porous collagen scaffolds, which are shown to possess significantly different ligand density, and significantly different ability to induce peripheral nerve regeneration in vivo. Data support the hypothesis that cell adhesion regulates contractile cell phenotypes, recently shown to be inversely related to organ regeneration. The technique provides a standardized way to quantify the surface chemistry of 3D matrices, and a means for introducing matrix effects in quantitative biological models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Adams, S. R., R. E. Campbell, L. A. Gross, B. R. Martin, G. K. Walkup, Y. Yao, J. Llopis, and R. Y. Tsien. New Biarsenical Ligands and Tetracysteine Motifs for Protein Labeling In Vitro and In Vivo: Synthesis and Biological Applications. J. Am. Chem. Society 124:6063-6076, 2002.

    Article  CAS  Google Scholar 

  2. Allen, M., and J. L. Jones. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J. Pathol. 223:162-176, 2011.

    CAS  PubMed  Google Scholar 

  3. Barber, T. A., G. M. Harbers, S. Park, M. Gilbert, and K. E. Healy. Ligand density characterization of peptide-modified biomaterials. Biomaterials 26:6897-6905, 2005.

    Article  CAS  PubMed  Google Scholar 

  4. Boeckstyns, M. E., A. I. Sørensen, J. F. Viñeta, B. Rosén, X. Navarro, S. J. Archibald, J. Valss-Solé, M. Moldovan, and C. Krarup. Collagen conduit versus microsurgical neurorrhaphy: 2-year follow-up of a prospective, blinded clinical and electrophysiological multicenter randomized, controlled trial. J Hand Surg Am. 38:2405-2411, 2013.

    Article  PubMed  Google Scholar 

  5. Buehler, C., K. H. Kim, U. Greuter, N. Schlumpf, and P. T. So. Single-photon counting multicolor multiphoton fluorescence microscope. J Fluoresc. 15: 41-51, 2005.

    Article  CAS  PubMed  Google Scholar 

  6. Calderwood, D. A., D. S. Tuckwell, J. Eble, K. Kühn, and M. J. Humphries. The integrin alpha1 A-domain is a ligand binding site for collagens and laminin. J. Biol. Chem. 272:12311-12317, 1997.

    Article  CAS  PubMed  Google Scholar 

  7. Chamberlain, L. J., I. V. Yannas, H. P. Hsu, G. Strichartz, and M. Spector. Collagen GAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft. Exp Neurol 154:315-329, 1998.

    Article  CAS  PubMed  Google Scholar 

  8. Chamberlain, L. J., I. V. Yannas, H. P. Hsu, and M. Spector. Connective tissue response to tubular implants for peripheral nerve regeneration: the role of myofibroblasts. J Comp Neurol. 417:415-430, 2000.

    Article  CAS  PubMed  Google Scholar 

  9. Emsley, J., C. G. Knight, R. W. Farndale, M. J. Barnes, and R. C. Liddington. Structural basis of collagen recognition by integrin alpha2beta1. Cell 101:47-56, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Engler, A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys J. 86:617-628, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Graham, G. P., S. D. Helmer, J. M. Haan, and A. Khandelwal. The use of Integra® Dermal Regeneration Template in the reconstruction of traumatic degloving injuries. J Burn Care Res. 34:261-266, 2013.

    Article  PubMed  Google Scholar 

  12. Harbers, G. M., L. J. Gamble, E. F. Irwin, D. G. Castner, and K. E. Healy. Development and characterization of a high-throughput system for assessing cell-surface receptor-ligand engagement. Langmuir 21:8374-8384, 2005.

    Article  CAS  PubMed  Google Scholar 

  13. Harley, B. A., Leung, J. H., Silva, E. C., and Gibson, L. J. Mechanical characterization of collagen-glycosaminoglycan scaffolds. Acta Biomater. 3:463-74, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Harley, B. A., Spilker, M. H, Wu, J. W., Asano, K., Hsu, H. P., Spector, M., and Yannas I. V. Optimal degradation rate for collagen chambers used for regeneration of peripheral nerves over long gaps. Cells Tissues Organs 176:153-65, 2004.

    Article  CAS  PubMed  Google Scholar 

  15. Huebsch, N., P. R. Arany, A. S. Mao, D. Shvartsman, O. A. Ali, S. A. Bencherif, J. Rivera-Feliciano, and D. J. Mooney. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater. 9:518-526, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hynes, R. O. Integrins: bidirectional, Allosteric Signaling Machines. Cell 110:673-687, 2002.

    Article  CAS  PubMed  Google Scholar 

  17. Jokinen, J., E. Dadu, P. Nykvist, J. Käpylä, D. J. White, J. Ivaska, P. Vehviläinen, H. Reunanen, H. Larjava, L. Häkkinen, and J. Heino. Integrin-mediated cell adhesion to type I collagen fibrils. J Biol Chem. 279:31956-31963, 2004.

    Article  CAS  PubMed  Google Scholar 

  18. Kingshott, P., G. Andersson, S. L. McArthur, and H. J. Griesser. Surface modification and chemical surface analysis of biomaterials. Curr Opin Chem Biol. 15:667-676, 2011.

    Article  CAS  PubMed  Google Scholar 

  19. Kong, H. J., T. Boontheekul, and D. J. Mooney. Quantifying the relation between adhesion ligand–receptor bond formation and cell phenotype. Proc Natl Acad Sci U.S.A. 103:18534–18539, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma, Z., Z. Mao, and C. Gao. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B Biointerfaces 60:137-157, 2007.

    Article  CAS  PubMed  Google Scholar 

  21. Madani, F., J. Lind, P. Damberg, S. R. Adams, R. Y. Tsien, and A. O. Gräslund. Hairpin structure of a biarsenical-tetracysteine motif determined by NMR spectroscopy. J Am Chem Soc.131:4613-4615, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maheshwari, G., G. Brown, D. A. Lauffenburger, A. Wells, and L. G. Griffith. Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci. 113:1677-1686, 2000.

    CAS  PubMed  Google Scholar 

  23. Naba, A., K. R. Clauser, S. Hoersch, H. Liu, S. A. Carr, and R. O. Hynes. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics 11:M111.014647, 2012.

    Article  Google Scholar 

  24. Plow, E. F., T. A. Haas, L. Zhang, J. Loftus, and J. W. Smith. Ligand binding to integrins. J Biol Chem. 275:21785-21788, 2000.

    Article  CAS  PubMed  Google Scholar 

  25. Schiller, H. B., C. C. Friedel, C. Boulegue, and R. Faessler. Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep. 12:259-266, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seifert, A. W., S. G. Kiama, M. G. Seifert, J. R. Goheen, T. M. Palmer, and M. Maden. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489:561-565, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Soller, E. C., D. S. Tzeranis, K. Miu, P. T. So, and I. V. Yannas. Common features of optimal collagen scaffolds that disrupt wound contraction and enhance regeneration both in peripheral nerves and in skin. Biomaterials 33:4783-4791, 2012.

    Article  CAS  PubMed  Google Scholar 

  28. Sweeney, S. M., J. P. Orgel, A. Fertala, J. D. McAuliffe, K. R. Turner, G. A. Di Lullo, S. Chen, O. Antipova, S. Perumal, L. Ala-Kokko, A. Forlino, W. A. Cabral, A. M. Barnes, J. C. Marini, and J. D. San Antonio. Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem. 283:21187-21197, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tuckwell, D., D. A. Calderwood, L. J. Green, and M. J. Humphries. Integrin α2 I-domain is a binding site for collagens. J Cell Sci. 108:1629-1637, 1995.

    CAS  PubMed  Google Scholar 

  30. Tzeranis, D. S., A. Roy, P. T. So, and I. V. Yannas. An optical method to quantify the density of ligands for cell adhesion receptors in three-dimensional matrices. J R Soc Interface. 6:S649-S661, 2010.

    Article  Google Scholar 

  31. Valenick, L. V., and J. E. Schwarzbauer. Ligand density and integrin repertoire regulate cellular response to LPA. Matrix Biol. 25:223-231, 2006.

    Article  CAS  PubMed  Google Scholar 

  32. Williams, L. R., F. M. Longo, H. C. Powell, G. Lundborg, and S. Varon. Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: parameters for a bioassay. J Comp Neurol. 218:460-470, 1983.

    Article  CAS  PubMed  Google Scholar 

  33. Yannas, I. V. Tissue and organ regeneration in adults. Second edition. New York; Springer, 2015.

    Google Scholar 

  34. Yannas, I. V., E. Lee, D. P. Orgill, E. M. Skrabut, and G. F. Murphy. Synthesis and Characterization of a model extracellular-matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci U.S.A. 86:933-937, 1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The cDNA of I domains (α1, α2) of integrin subunits α1 and α2 were a kind gift of Sue Craig (Martin Humphries Lab, University of Manchester, UK). We thank Dr. Amit Roy for performing the initial protein expressions and purifications, Mrs Debby Pheasant (MIT biophysical instrumentation facility) for valuable technical assistance in the circular dichroism experiments, Dr. Albert Tai (genomics facility core, Tufts University) for valuable technical assistance in the BIACORE experiments, and Prof. K. Van Vliet for providing access to the fluorescent microscope of her lab. The authors acknowledge financial support from the National Institutes of Health grant RO1 NS051320 (I.V.Y., D.S.T, E.C.S., P.T.C.S), the Biomechanics Training Grant T32EB006348 (E.C.S.), the National Science Foundation Graduate Research Fellowship DGE‐1122374 (M.C.B), Singapore Alliance for Science and Technology Center, BioSym IRG and Singapore and MIT Alliance 2, CSB program (P.T.C.S, and D.S.T.), and National Institutes of Health grant 9P41EB015871-26A1 (P.T.C.S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios S. Tzeranis.

Additional information

Associate Editor Agata A. Exner oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzeranis, D.S., Soller, E.C., Buydash, M.C. et al. In Situ Quantification of Surface Chemistry in Porous Collagen Biomaterials. Ann Biomed Eng 44, 803–815 (2016). https://doi.org/10.1007/s10439-015-1445-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1445-x

Keywords

Navigation