Skip to main content
Log in

Micro-Computed Tomography Based Computational Fluid Dynamics for the Determination of Shear Stresses in Scaffolds Within a Perfusion Bioreactor

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Perfusion bioreactors are known to exert shear stresses on cultured cells, leading to cell differentiation and enhanced extracellular matrix deposition on scaffolds. The influence of the scaffold’s porous microstructure is investigated for a polycaprolactone (PCL) scaffold with a regular microarchitecture and a silk fibroin (SF) scaffold with an irregular network of interconnected pores. Their complex 3D geometries are imaged by micro-computed tomography and used in direct pore-level simulations of the entire scaffold–bioreactor system to numerically solve the governing mass and momentum conservation equations for fluid flow through porous media. The velocity field and wall shear stress distribution are determined for both scaffolds. The PCL scaffold exhibited an asymmetric distribution with peak and plateau, while the SF scaffold exhibited a homogenous distribution and conditioned the flow more efficiently than the PCL scaffold. The methodology guides the design and optimization of the scaffold geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

micro-CT:

Micro-computed tomography

DPLS:

Direct pore-level simulations

ECM:

Extracellular matrix

PCL:

Polycaprolactone

REV:

Representative elementary volume

ROI:

Region of interest

SF:

Silk fibroin

u :

Velocity (m/s)

y :

Height above the phase boundary (m)

μ :

Dynamic viscosity (kg/m/s)

ρ :

Density (kg/m3)

τ w :

Wall shear stress (Pa)

References

  1. Ansys. Ansys-CFX, 2009.

  2. Bancroft, G. N., V. I. Sikavitsas, J. van den Dolder, T. L. Sheffield, C. G. Ambrose, J. A. Jansen, and A. G. Mikos. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl. Acad. Sci. 99(20):12600–12605, 2002.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Biotek, D. 3D InsertTM PCL scaffold.

  4. Boschetti, F., M. T. Raimondi, F. Migliavacca, and G. Dubini. Prediction of the micro-fluid dynamic environment imposed to three-dimensional engineered cell systems in bioreactors. J. Biomech. 39(3):418–425, 2006.

    Article  PubMed  Google Scholar 

  5. Botchwey, E., S. Pollack, E. Levine, and C. Laurencin. Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. J. Biomed. Mater. Res. 55(2):242–253, 2001.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Byrne, D. P., D. Lacroix, J. A. Planell, D. J. Kelly, and P. J. Prendergast. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28(36):5544–5554, 2007.

    Article  PubMed  CAS  Google Scholar 

  7. Cioffi, M., F. Boschetti, M. T. Raimondi, and G. Dubini. Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: a micro-CT based model. Biotechnol. Bioeng. 93(3):500–510, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. David, V., A. Guignandon, A. Martin, L. Malaval, M.-H. Lafage-Proust, A. Rattner, V. Mann, B. Noble, D. B. Jones, and L. Vico. Ex vivo bone formation in bovine trabecular bone cultured in a dynamic 3D bioreactor is enhanced by compressive mechanical strain. Tissue Eng. Part A 14(1):117–126, 2008.

    Article  PubMed  CAS  Google Scholar 

  9. Fredrich, J., A. DiGiovanni, and D. Noble. Predicting macroscopic transport properties using microscopic image data. J. Geophys. Res. Solid Earth (1978–2012). 111(B3), 2006.

  10. Friess, H., S. Haussener, A. Steinfeld, and J. Petrasch. Tetrahedral mesh generation based on space indicator functions. Int. J. Numer. Methods Eng. 93:1040–1056, 2012.

    Article  Google Scholar 

  11. Goldstein, A. S., T. M. Juarez, C. D. Helmke, M. C. Gustin, and A. G. Mikos. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22(11):1279–1288, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Gomes, M. E., V. I. Sikavitsas, E. Behravesh, R. L. Reis, and A. G. Mikos. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J. Biomed. Mater. Res. Part A 67(1):87–95, 2003.

    Article  Google Scholar 

  13. Haussener, S., P. Coray, W. Lipinski, P. Wyss, and A. Steinfeld. Tomography-based heat and mass transfer characterization of reticulate porous ceramics for high-temperature processing. J. Heat Transfer 132:023305, 2010.

    Article  Google Scholar 

  14. Haussener, S., and A. Steinfeld. Effective heat and mass transport properties of anisotropic porous ceria for solar thermochemical fuel generation. Materials 5(1):192–209, 2012.

    Article  CAS  Google Scholar 

  15. Ho, S. T., and D. W. Hutmacher. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27(8):1362–1376, 2006.

    Article  PubMed  CAS  Google Scholar 

  16. Hofmann, S., H. Hagenmüller, A. M. Koch, R. Müller, G. Vunjak-Novakovic, D. L. Kaplan, H. P. Merkle, and L. Meinel. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials 28(6):1152–1162, 2007.

    Article  PubMed  CAS  Google Scholar 

  17. Hofmann, S., K. S. Stok, T. Kohler, A. J. Meinel, and R. Müller. Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds. Acta Biomater. 10(1):308–317, 2014.

    Article  PubMed  CAS  Google Scholar 

  18. Jungreuthmayer, C., S. W. Donahue, M. J. Jaasma, A. A. Al-Munajjed, J. Zanghellini, D. J. Kelly, and F. J. O’Brien. A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors. Tissue Eng. Part A 15(5):1141–1149, 2008.

    Article  Google Scholar 

  19. Kelly, D., and P. J. Prendergast. Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J. Biomech. 38(7):1413–1422, 2005.

    Article  PubMed  CAS  Google Scholar 

  20. Lappa, M. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution. Biotechnol. Bioeng. 84(5):518–532, 2003.

    Article  PubMed  CAS  Google Scholar 

  21. Lesman, A., Y. Blinder, and S. Levenberg. Modeling of flow-induced shear stress applied on 3D cellular scaffolds: implications for vascular tissue engineering. Biotechnol. Bioeng. 105(3):645–654, 2010.

    Article  PubMed  CAS  Google Scholar 

  22. Maes, F., T. Claessens, M. Moesen, H. Van Oosterwyck, P. Van Ransbeeck, and P. Verdonck. Computational models for wall shear stress estimation in scaffolds: a comparative study of two complete geometries. J. Biomech. 45(9):1586–1592, 2012.

    Article  PubMed  CAS  Google Scholar 

  23. Maes, F., P. Van Ransbeeck, H. Van Oosterwyck, and P. Verdonck. Modeling fluid flow through irregular scaffolds for perfusion bioreactors. Biotechnol. Bioeng. 103(3):621–630, 2009.

    Article  PubMed  CAS  Google Scholar 

  24. McGarry, J. G., J. Klein-Nulend, M. G. Mullender, and P. J. Prendergast. A comparison of strain and fluid shear stress in stimulating bone cell responses—a computational and experimental study. FASEB J. 19(3):482–484, 2005.

    PubMed  CAS  Google Scholar 

  25. Milan, J.-L., J. A. Planell, and D. Lacroix. Computational modelling of the mechanical environment of osteogenesis within a polylactic acid–calcium phosphate glass scaffold. Biomaterials 30(25):4219–4226, 2009.

    Article  PubMed  CAS  Google Scholar 

  26. Milan, J.-L., J. A. Planell, and D. Lacroix. Simulation of bone tissue formation within a porous scaffold under dynamic compression. Biomech. Model. Mechanobiol. 9(5):583–596, 2010.

    Article  PubMed  Google Scholar 

  27. Nazarov, R., H.-J. Jin, and D. L. Kaplan. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5(3):718–726, 2004.

    Article  PubMed  CAS  Google Scholar 

  28. Nerem, R. Tissue engineering in the USA. Med. Biol. Eng. Comput. 30(4):CE8–CE12, 1992.

    Article  PubMed  CAS  Google Scholar 

  29. Nichol, J. W., and A. Khademhosseini. Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5(7):1312–1319, 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Olivares, A. L., È. Marsal, J. A. Planell, and D. Lacroix. Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30(30):6142–6149, 2009.

    Article  PubMed  CAS  Google Scholar 

  31. Petrasch, J., P. Wyss, and A. Steinfeld. Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics. J. Quant. Spectrosc. Radiat. Transfer 105(2):180–197, 2007.

    Article  CAS  Google Scholar 

  32. Place, E. S., N. D. Evans, and M. M. Stevens. Complexity in biomaterials for tissue engineering. Nat. Mater. 8(6):457–470, 2009.

    Article  PubMed  CAS  Google Scholar 

  33. Porter, B., R. Zauel, H. Stockman, R. Guldberg, and D. Fyhrie. 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J. Biomech. 38(3):543–549, 2005.

    Article  PubMed  Google Scholar 

  34. Sandino, C., and D. Lacroix. A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models. Biomech. Model. Mechanobiol. 10(4):565–576, 2011.

    Article  PubMed  Google Scholar 

  35. Sandino, C., J. Planell, and D. Lacroix. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41(5):1005–1014, 2008.

    Article  PubMed  CAS  Google Scholar 

  36. Sikavitsas, V. I., G. N. Bancroft, H. L. Holtorf, J. A. Jansen, and A. G. Mikos. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc. Natl. Acad. Sci. 100(25):14683–14688, 2003.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Sikavitsas, V. I., G. N. Bancroft, J. J. Lemoine, M. A. Liebschner, M. Dauner, and A. G. Mikos. Flow perfusion enhances the calcified matrix deposition of marrow stromal cells in biodegradable nonwoven fiber mesh scaffolds. Ann. Biomed. Eng. 33(1):63–70, 2005.

    Article  PubMed  Google Scholar 

  38. Tsukada, M., Y. Gotoh, M. Nagura, N. Minoura, N. Kasai, and G. Freddi. Structural-changes of silk fibroin membranes induced by immersion in methanol aqueous-solutions. J. Polym. Sci. B 32(5):961–968, 1994.

    Article  CAS  Google Scholar 

  39. Uebersax, L., H. Hagenmüller, S. Hofmann, E. Gruenblatt, R. Müller, G. Vunjaknovakovic, D. L. Kaplan, H. Merkle, and L. Meinel. Effect of scaffold design on bone morphology in vitro. Tissue Eng. 12(12):3417–3429, 2006.

    Article  PubMed  CAS  Google Scholar 

  40. van Lenthe, G. H., H. Hagenmüller, M. Bohner, S. J. Hollister, L. Meinel, and R. Müller. Nondestructive micro-computed tomography for biological imaging and quantification of scaffold–bone interaction in vivo. Biomaterials 28(15):2479–2490, 2007.

    Article  PubMed  Google Scholar 

  41. Van Ransbeeck, P., F. Maes, S. Impens, H. Van Oosterwyck, and P. Verdonck. Numerical modeling of perfusion flow in irregular scaffolds. In: 4th European Conference of the International Federation for Medical and Biological Engineering, 2009, pp. 2677–2680.

  42. Vepari, C., and D. L. Kaplan. Silk as a biomaterial. Prog. Polym. Sci. 32(8):991–1007, 2007.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Vetsch, J. R., S. Hofmann, and R. Müller. Increased flow velocity positively influences osteogenic differentiation of human stem cells in a perfusion bioreactor. In: 3rd Termis World Congress, 2012.

  44. Vetsch, J. R., R. Müller, and S. Hofmann. The evolution of simulation techniques for dynamic bone tissue engineering in bioreactors. J. Tissue Eng. Regen. Med., 2013. doi: 10.1002/term.1733.

  45. Voronov, R., S. VanGordon, V. I. Sikavitsas, and D. V. Papavassiliou. Computational modeling of flow-induced shear stresses within 3D salt-leached porous scaffolds imaged via micro-CT. J. Biomech. 43(7):1279–1286, 2010.

    Article  PubMed  Google Scholar 

  46. Yao, Y., Y. Yu, J. Guo, Y. Qian, and J. Wang. Prediction of shear stress distribution throughout 3D bone scaffold in perfusion environment. In: 2010 International Conference on Image Analysis and Signal Processing (IASP), 2010, pp. 51–54.

  47. Zermatten, E., S. Haussener, M. Schneebeli, and A. Steinfeld. Tomography-based determination of permeability and Dupuit-Forchheimer coefficient of characteristic snow samples. J. Glaciol. 57(205):811–816, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the European Union (BIODESIGN FP7-NMP-2010-LARGE-4). We thank H. Fries and A. Haselbacher for their support with the computational grid generation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Steinfeld.

Additional information

Associate Editor Scott I Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zermatten, E., Vetsch, J.R., Ruffoni, D. et al. Micro-Computed Tomography Based Computational Fluid Dynamics for the Determination of Shear Stresses in Scaffolds Within a Perfusion Bioreactor. Ann Biomed Eng 42, 1085–1094 (2014). https://doi.org/10.1007/s10439-014-0981-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-0981-0

Keywords

Navigation