Skip to main content
Log in

Tissue engineering in the USA

  • Special Feature: Cellular Engineering
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Tissue engineering is the application of the principles and methods of engineering and the life sciences towards the development of biological substitutes to restore, maintain or improve functions. It is an area which is emerging in importance worldwide. In the USA it has been actively fostered by the National Science Foundation, both through research grants and the sponsorship of a series of workshops starting in 1988. This brief review of activities in the USA focuses on cell culture technology as a foundation for tissue engineering and then discusses examples of applications. These include artificial skin and the use of encapsulated cells in the development of bioartificial organs. Also discussed is the reconstitution of a blood vessel in culture, both for use in basic research and for implantation as an artificial blood vessel in bypass surgery. In conclusion, other potential applications are mentioned as well as generic areas of technology for future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebischer, P., Winn, S. R., Tresco, P. A., Greene, L. A. andJaeger, C. B. (1991) Transplantation of polymer encapsulated neurotransmitter secreting cells: effect of the encapsulation technique.J. Biomech. Eng.,113, 178–183.

    Google Scholar 

  • Barnard, S. M. andWalt, D. R. (1991) Chemical sensors based on controlled-release polymer systems.Science,251, 927–929.

    Google Scholar 

  • Bell, E., Ehrlich, H., Buttlle, D. andNakatsuji, T. (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness.Ibid.,,211, 1052–1054.

    Google Scholar 

  • Bell, E., Sher, S., Hull, B., Merrill, C., Rosen, S., Chamson, A., Asselineau, D., Dubertret, L., Coulomb, B., Lapiere, C., Nusgens, B. andNeveus, Y. (1983) The reconstitution of living skin.J. Invest. Dermotol.,81, 2s-10s.

    Article  Google Scholar 

  • Bell, E., Rosenberg, M., Kemp, P. L., Parenteau, N., Haimes, H., Chen, J., Swiderek, M., Kaplan, R., Kagan, D., Mason, V. andBoucher, L. (1989). Reconstitution of living organ equivalents from specialized cells and matrix biomolecules.Baquey, C. andDupuy, B. (Eds.), Proc. INSERM Coll. Hybrid Artificial Organs, 13–28.

  • Cima, L., Vacanti, J. P., Vacanti, C., Ingber, D., Mooney, D. andLanger, R. (1991) Tissue engineering by cell transplantation using degradable polymer substrates.J. Biomech. Enr.,113, 143–151.

    Google Scholar 

  • Colton, C. andAugoustiniatos, E. S. (1991) Bioengineering in the development of the hybrid artificial pancreas.Ibid.,,113, 152–170.

    Google Scholar 

  • Fox, C. F. andBurger, M. M. (Eds.) (1990) Abstract proceedings, UCLA Symposium on Tissue Engineering.J. Cell. Biochem., Suppl. 14E, 227–256.

  • Friedman, E. A. (1989) Toward a hybrid artificial pancreas.Diabetes Care,12, 415–420.

    Google Scholar 

  • Jones, P. A. (1982) Construction of an artificial blood vessel wall from cultured endothelial and smooth muscle cells.J. Cell Biol.,74, 1882–1886.

    Google Scholar 

  • Khan, T., Dauzvardis, M. andSayers, S. (1991) Carbon filament implants promote axonal growth across the transected rat spinal cord.Brain Res.,541, 139–145.

    Article  Google Scholar 

  • Langer, R. (1990) New methods of drug delivery.Science,249, 1527–1533.

    Google Scholar 

  • Leff, D. (1983) New biological assembly line. InThe cell: inter-and intra-relationships. NSF Mosaic Reader series, Avery Publishing Group, Wayne, New Jersey, 20–27.

    Google Scholar 

  • Levesque, M. J. andNerem, R. M. (1985) The elongation and orientation of cultured endothelial cells in response to shear stress.J. Biomech Eng.,176, 341–347.

    Article  Google Scholar 

  • Levesque, M. J., Sprague, E. A., Schwartz, C. J. andNerem, R. M. (1989). The influence of shear stress on cultured vascular endothelial cells: the stress response of an anchorage-dependent mammalian cell.Biotech. Prog.,5, 1–8.

    Article  Google Scholar 

  • Levesque, M. J., Nerem, R. M. andSprague, E. A. (1990) Vascular endothelial cell proliferation in culture and the influence of flow.Biomaterials,11, 702–707.

    Article  Google Scholar 

  • Lim, F. andSum, A. M. (1980) Microencapsulated islets as bio-artificial endocrine pancreas.Science,210, 908–910.

    Google Scholar 

  • Nabel, E. G. andNabel, G. J. (1991) Gene transfer and cardiovascular disease.Trends Cardiovasc. Med.,1, (1), 12–17.

    Article  Google Scholar 

  • Nerem, R. M. andGirard, P. R. (1990) Hemodynamic influences on vascular endothelial biology.Toxic. Path.,18, 572–582.

    Google Scholar 

  • Pool, R. (1990) Slow going for blood substitutes.Science,250, 1655–1656.

    Google Scholar 

  • Skalak, R. andFox, C. F. (Eds.) (1988)Tissue engineering. Alan R. Liss, New York.

    Google Scholar 

  • Skalak, R. (Ed.) (1991) Special issue on tissue engineering.J. Biomech. Eng.,113, (2).

  • Stanley, J. C., Burkel, W. E., Ford, J. W., Vinter, D. W., Kahn, R. H., Whitehouse, W. M. Jr andGraham, L. M. (1982). Enhanced patency of small-diameter, externally supported dacron iliofemoral grafts seeded with endothelial cells.Surg.,92, 994–1005.

    Google Scholar 

  • Tompkins, R., Hilton, J., Burke, J., Schoengeld, D., Hegarty, M., Bondoc, C., Quimby, W., Behringer, G. andAckroyd, F. (1989) Increased survival after massive thermal injuries in adults: preliminary report using artificial skin.Crit. Care Med.,17, 8, 734–740.

    Google Scholar 

  • van Brunt, J. (1991) Artificial organs from culture.Biotech.,9, 136–137.

    Article  Google Scholar 

  • van Buul-Wortelboer, M. F., Brinkman, H. J. M., Dingemans, K. P., DeGroot, P. G., van Aken, W. G. andvan Mourick, J. A. (1986) Reconstruction of the vascular wall in vitro: a novel model to study interactions between endothelial and smooth muscle cells.Exp. Cell Res.,162, 151–158.

    Article  Google Scholar 

  • Weinberg, C. B. andBell, E. (1986) A blood vessel model constructed from collagen and cultured vascular cells.Science,231, 397–399.

    Google Scholar 

  • Wilson, J. M., Birinyi, L. K., Salomon, R. N., Libby, P., Callow, A. D. andMulligan, R. C. (1989) Implantation of vascular grafts lined with genetically modified endothelial cells.Ibid.,,244, 1344–1346.

    Google Scholar 

  • Yannas, I. V., Burke, J. F., Orgill, D. P. andSkrabut, E. M. (1982) Wound tissue can utilize a polymeric template to synthesize a functional extention of skin.Ibid.,,215, 174–176.

    Google Scholar 

  • Zilla, P. P., Fasol, R. D. andDeutsch, M. (Eds.) (1987)Endothelialization of vascular grafts. Karger, Basel, Switzerland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nerem, R.M. Tissue engineering in the USA. Med. Biol. Eng. Comput. 30, CE8–CE12 (1992). https://doi.org/10.1007/BF02446171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446171

Keywords

Navigation