Skip to main content
Log in

On the In Vivo Deformation of the Mitral Valve Anterior Leaflet: Effects of Annular Geometry and Referential Configuration

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Alteration of the native mitral valve (MV) shape has been hypothesized to have a profound effect on the local tissue stress distribution, and is potentially linked to limitations in repair durability. The present study was undertaken to elucidate the relation between MV annular shape and central mitral valve anterior leaflet (MVAL) strain history, using flat annuloplasty in an ovine model. In addition, we report for the first time the presence of residual in vivo leaflet strains. In vivo leaflet deformations were measured using sonocrystal transducers sutured to the MVAL (n = 10), with the 3D positions acquired over the full cardiac cycle. In six animals a flat ring was sutured to the annulus and the transducer positions recorded, while in the remaining four the MV was excised from the exsanguinated heart and the stress-free transducer positions obtained. In the central region of the MVAL the peak stretch values, referenced to the minimum left ventricular pressure (LVP), were 1.10 ± 0.01 and 1.31 ± 0.03 (mean ± standard error) in the circumferential and radial directions, respectively. Following flat ring annuloplasty, the central MVAL contracted 28% circumferentially and elongated 16% radially at minimum LVP, and the circumferential direction was under a negative strain state during the entire cardiac cycle. After valve excision from the exsanguinated heart, the MVAL contracted significantly (18 and 30% in the circumferential and radial directions, respectively), indicating the presence of substantial in vivo residual strains. While the physiological function of the residual strains (and their associated stresses) are at present unknown, accounting for their presence is clearly necessary for accurate computational simulations of MV function. Moreover, we demonstrated that changes in annular geometry dramatically alter valvular functional strains in vivo. As levels of homeostatic strains are related to tissue remodeling and homeostasis, our results suggest that surgically introduced alterations in MV shape could lead to the long term MV mechanobiological and microstructural alterations that could ultimately affect MV repair durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adams, D. H., R. Rosenhek, and V. Falk. Degenerative mitral valve regurgitation: best practice revolution. Eur. Heart J. 31(16):1958–1966, 2010.

    Article  PubMed  Google Scholar 

  2. Barber, J. E., F. K. Kasper, N. B. Ratliff, D. M. Cosgrove, B. P. Griffin, and I. Vesely. Mechanical properties of myxomatous mitral valves. J. Thorac. Cardiovasc. Surg. 122(5):955–962, 2001.

    Article  PubMed  CAS  Google Scholar 

  3. Bothe, W., E. Kuhl, J. P. Kvitting, M. K. Rausch, S. Goktepe, J. C. Swanson, S. Farahmandnia, N. B. Ingels, Jr., and D. C. Miller. Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart. Circulation 124(11 Suppl):S81–S96, 2011.

    Article  PubMed  Google Scholar 

  4. Bothe, W., J. P. Kvitting, J. C. Swanson, S. Hartnett, N. B. Ingels, Jr., and D. C. Miller. Effects of different annuloplasty rings on anterior mitral leaflet dimensions. J. Thorac. Cardiovasc. Surg. 139(5):1114–1122, 2010.

    Article  PubMed  Google Scholar 

  5. Braunberger, E., A. Deloche, A. Berrebi, F. Abdallah, J. A. Celestin, P. Meimoun, G. Chatellier, S. Chauvaud, J. N. Fabiani, and A. Carpentier. Very long-term results (more than 20 years) of valve repair with carpentier’s techniques in nonrheumatic mitral valve insufficiency. Circulation 104(12 Suppl 1):I8–I11, 2001.

    PubMed  CAS  Google Scholar 

  6. Camp, R. J., M. Liles, J. Beale, N. Saeidi, B. P. Flynn, E. Moore, S. K. Murthy, and J. W. Ruberti. Molecular mechanochemistry: low force switch slows enzymatic cleavage of human type I collagen monomer. J. Am. Chem. Soc. 133(11):4073–4078, 2011.

    Article  PubMed  CAS  Google Scholar 

  7. Carpentier, A. Cardiac valve surgery—the “French correction”. J. Thorac. Cardiovasc. Surg. 86(3):323–337, 1983.

    PubMed  CAS  Google Scholar 

  8. Carpentier, A. F., A. Lessana, J. Y. Relland, E. Belli, S. Mihaileanu, A. J. Berrebi, E. Palsky, and D. F. Loulmet. The “physio-ring”: an advanced concept in mitral valve annuloplasty. Ann. Thorac. Surg. 60(5):1177–1185, 1995; discussion 1185–1186.

    Article  PubMed  CAS  Google Scholar 

  9. Chuong, C. J., and Y. C. Fung. On residual stress in arteries. J. Biomech. Eng. 108:189–192, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108(May):189–192, 1986.

    Article  PubMed  CAS  Google Scholar 

  11. Chuong, C. J., and Y. C. Fung. Residual stress in arteries. In: Frontiers in Biomechanics, edited by G. Schmid-Schonbein, S. L. Y. Woo, and B. Zweifach. New York: Springer-Verlag, 1986, pp. 117–129.

  12. Cohn, L. H., G. S. Couper, S. F. Aranki, R. J. Rizzo, N. M. Kinchla, and J. J. Collins, Jr. Long-term results of mitral valve reconstruction for regurgitation of the myxomatous mitral valve. J. Thorac. Cardiovasc. Surg. 107(1):143–150, 1994; discussion 150–151.

    PubMed  CAS  Google Scholar 

  13. David, T. E., S. Armstrong, Z. Sun, and L. Daniel. Late results of mitral valve repair for mitral regurgitation due to degenerative disease. Ann. Thorac. Surg. 56(1):7–12, 1993; discussion 13–14.

    Article  PubMed  CAS  Google Scholar 

  14. Duplessis, L. A., and P. Marchand. The anatomy of the mitral valve and its associated structures. Thorax 19:221–227, 1964.

    Article  PubMed  CAS  Google Scholar 

  15. Eckert, C. E., B. Zubiate, M. Vergnat, J. H. Gorman, III, R. C. Gorman, and M. S. Sacks. In vivo dynamic deformation of the mitral valve annulus. Ann. Biomed. Eng. 37(9):1757–1771, 2009.

    Article  PubMed  Google Scholar 

  16. Einstein, D. R., F. Del Pin, X. Jiao, A. P. Kuprat, J. P. Carson, K. S. Kunzelman, R. P. Cochran, J. M. Guccione, and M. B. Ratcliffe. Fluid–structure interactions of the mitral valve and left heart: comprehensive strategies, past, present and future. Int. J. Numer. Methods Eng. 26(3–4):348–380, 2010.

    PubMed  Google Scholar 

  17. Einstein, D. R., P. Reinhall, M. Nicosia, R. P. Cochran, and K. Kunzelman. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Comput. Methods Biomech. Biomed. Eng. 6(1):33–44, 2003.

    Article  CAS  Google Scholar 

  18. Fung, Y. C. What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19(3):237–249, 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1993.

    Google Scholar 

  20. Fung, Y. C., and S. Q. Liu. Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. 70(6):2455–2470, 1991.

    PubMed  CAS  Google Scholar 

  21. Gillinov, A. M., E. H. Blackstone, J. White, M. Howard, R. Ahkrass, A. Marullo, and D. M. Cosgrove. Durability of combined aortic and mitral valve repair. Ann. Thorac. Surg. 72(1):20–27, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Gillinov, A. M., D. M. Cosgrove, E. H. Blackstone, R. Diaz, J. H. Arnold, B. W. Lytle, N. G. Smedira, J. F. Sabik, P. M. McCarthy, and F. D. Loop. Durability of mitral valve repair for degenerative disease. J. Thorac. Cardiovasc. Surg. 116(5):734–743, 1998.

    Article  PubMed  CAS  Google Scholar 

  23. Goldsmith, I. R., G. Y. Lip, and R. L. Patel. A prospective study of changes in the quality of life of patients following mitral valve repair and replacement. Eur. J. Cardiothorac. Surg. 20(5):949–955, 2001.

    Article  PubMed  CAS  Google Scholar 

  24. Gorman, J. H., III, K. B. Gupta, J. T. Streicher, R. C. Gorman, B. M. Jackson, M. B. Ratcliffe, D. K. Bogen, and L. H. Edmunds, Jr. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112(3):712–726, 1996.

    Article  PubMed  Google Scholar 

  25. Grashow, J. S., A. P. Yoganathan, and M. S. Sacks. Biaixal stress–stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34(2):315–325, 2006.

    Article  PubMed  Google Scholar 

  26. Hashima, A. R., A. A. Young, A. D. McCulloch, and L. K. Waldman. Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog. J. Biomech. 26:19–35, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. He, Z., J. Ritchie, J. S. Grashow, M. S. Sacks, and A. P. Yoganathan. In vitro dynamic strain behavior of the mitral valve posterior leaflet. J. Biomech. Eng. 127(3):504–511, 2005.

    Article  PubMed  Google Scholar 

  28. Itoh, A., G. Krishnamurthy, J. C. Swanson, D. B. Ennis, W. Bothe, E. Kuhl, M. Karlsson, L. R. Davis, D. C. Miller, and N. B. Ingels, Jr. Active stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 296(6):H1766–H1773, 2009.

    Article  PubMed  CAS  Google Scholar 

  29. Jimenez, J. H., S. W. Liou, M. Padala, Z. He, M. Sacks, R. C. Gorman, J. H. Gorman, III, and A. P. Yoganathan. A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet. J. Thorac. Cardiovasc. Surg. 134(6):1562–1568, 2007.

    Article  PubMed  Google Scholar 

  30. Kaplan, S. R., G. Bashein, F. H. Sheehan, M. E. Legget, B. Munt, X. N. Li, M. Sivarajan, E. L. Bolson, M. Zeppa, M. Z. Arch, and R. W. Martin. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am. Heart J. 139(3):378–387, 2000.

    Article  PubMed  CAS  Google Scholar 

  31. Komeda, M., J. R. Glasson, A. F. Bolger, G. T. Daughters, 2nd, A. MacIsaac, S. N. Oesterle, N. B. Ingels, Jr., and D. C. Miller. Geometric determinants of ischemic mitral regurgitation. Circulation 96(9 Suppl):II-128–II-133, 1997.

    Google Scholar 

  32. Krishnamurthy, G., D. B. Ennis, A. Itoh, W. Bothe, J. C. Swanson, M. Karlsson, E. Kuhl, D. C. Miller, and N. B. Ingels, Jr. Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am. J. Physiol. Heart Circ. Physiol. 295(3):H1141–H1149, 2008.

    Article  PubMed  CAS  Google Scholar 

  33. Krishnamurthy, G., A. Itoh, W. Bothe, J. C. Swanson, E. Kuhl, M. Karlsson, D. Craig Miller, and N. B. Ingels, Jr. Stress–strain behavior of mitral valve leaflets in the beating ovine heart. J. Biomech. 42(12):1909–1916, 2009.

    Article  PubMed  Google Scholar 

  34. Krishnamurthy, G., A. Itoh, J. C. Swanson, W. Bothe, M. Karlsson, E. Kuhl, D. Craig Miller, and N. B. Ingels, Jr. Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart. J. Biomech. 42(16):2697–2701, 2009.

    Article  PubMed  Google Scholar 

  35. Krishnamurthy, G., A. Itoh, J. C. Swanson, D. C. Miller, and N. B. Ingels, Jr. Transient stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 298(6):H2221–H2225, 2010.

    Article  PubMed  CAS  Google Scholar 

  36. Kunzelman, K. S., R. P. Cochran, E. D. Verrier, and R. C. Eberhart. Anatomic basis for mitral valve modelling. J. Heart Valve Dis. 3(5):491–496, 1994.

    PubMed  CAS  Google Scholar 

  37. Kunzelman, K. S., D. W. Quick, and R. P. Cochran. Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis. Ann. Thorac. Surg. 66(6 Suppl):S198–S205, 1998.

    Article  PubMed  CAS  Google Scholar 

  38. Kvitting, J. P., W. Bothe, S. Goktepe, M. K. Rausch, J. C. Swanson, E. Kuhl, N. B. Ingels, Jr., and D. C. Miller. Anterior mitral leaflet curvature during the cardiac cycle in the normal ovine heart. Circulation 122(17):1683–1689, 2010.

    Article  PubMed  Google Scholar 

  39. Levine, R. A., M. D. Handschumacher, A. J. Sanfilippo, A. A. Hagege, P. Harrigan, J. E. Marshall, and A. E. Weyman. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation 80(3):589–598, 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Liao, J., L. Yang, J. Grashow, and M. S. Sacks. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. J. Biomech. Eng. 129(1):78–87, 2007.

    Article  PubMed  Google Scholar 

  41. Liu, S. Q., and Y. C. Fung. Relationship between hypertension, hypertrophy, and opening angle of zero-stress state of arteries following aortic constriction. J. Biomech. Eng. 111(4):325–335, 1989.

    Article  PubMed  CAS  Google Scholar 

  42. Mahmood, F., J. H. Gorman, III, B. Subramaniam, R. C. Gorman, P. J. Panzica, R. C. Hagberg, A. B. Lerner, P. E. Hess, A. Maslow, and K. R. Khabbaz. Changes in mitral valve annular geometry after repair: saddle-shaped versus flat annuloplasty rings. Ann. Thorac. Surg. 90(4):1212–1220, 2010.

    Article  PubMed  Google Scholar 

  43. Mahmood, F., B. Subramaniam, J. H. Gorman, III, R. M. Levine, R. C. Gorman, A. Maslow, P. J. Panzica, R. M. Hagberg, S. Karthik, and K. R. Khabbaz. Three-dimensional echocardiographic assessment of changes in mitral valve geometry after valve repair. Ann. Thorac. Surg. 88(6):1838–1844, 2009.

    Article  PubMed  Google Scholar 

  44. May-Newman, K., and F. C. Yin. Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am. J. Physiol. 269(4 Pt 2):H1319–H1327, 1995.

    PubMed  CAS  Google Scholar 

  45. Merryman, W. D., I. Youn, H. D. Lukoff, P. M. Krueger, F. Guilak, R. A. Hopkins, and M. S. Sacks. Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am. J. Physiol. Heart Circ. Physiol. 290(1):H224–H231, 2006.

    Article  PubMed  CAS  Google Scholar 

  46. Nowicki, E. R., R. W. Weintraub, N. J. Birkmeyer, J. H. Sanders, L. J. Dacey, S. J. Lahey, B. Leavitt, R. A. Clough, R. D. Quinn, and G. T. O’Connor. Mitral valve repair and replacement in northern New England. Am Heart J 145(6):1058–1062, 2003.

    Article  PubMed  Google Scholar 

  47. Padala, M., R. A. Hutchison, L. R. Croft, J. H. Jimenez, R. C. Gorman, J. H. Gorman, III, M. S. Sacks, and A. P. Yoganathan. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann. Thorac. Surg. 88(5):1499–1504, 2009.

    Article  PubMed  Google Scholar 

  48. Padala, M., M. S. Sacks, S. W. Liou, K. Balachandran, Z. He, and A. P. Yoganathan. Mechanics of the mitral valve strut chordae insertion region. J. Biomech. Eng. 132(8):081004, 2010.

    Article  PubMed  Google Scholar 

  49. Perier, P., A. Deloche, S. Chauvaud, J. N. Fabiani, P. Rossant, J. P. Bessou, J. Relland, H. Bourezak, F. Gomez, P. Blondeau, et al. Comparative evaluation of mitral valve repair and replacement with Starr, Bjork, and porcine valve prostheses. Circulation 70(3 Pt 2):I187–I192, 1984.

    PubMed  CAS  Google Scholar 

  50. Prot, V., B. Skallerud, G. Sommer, and G. A. Holzapfel. On modelling and analysis of healthy and pathological human mitral valves: two case studies. J. Mech. Behav. Biomed. Mater. 3(2):167–177, 2010.

    Article  PubMed  CAS  Google Scholar 

  51. Quick, D. W., K. S. Kunzelman, J. M. Kneebone, and R. P. Cochran. Collagen synthesis is upregulated in mitral valves subjected to altered stress. ASAIO J. 43(3):181–186, 1997.

    PubMed  CAS  Google Scholar 

  52. Rausch, M. K., W. Bothe, J. P. Kvitting, S. Goktepe, D. C. Miller, and E. Kuhl. In vivo dynamic strains of the ovine anterior mitral valve leaflet. J. Biomech. 44(6):1149–1157, 2011.

    Article  PubMed  Google Scholar 

  53. Rodriguez, E. K., A. Hoger, and A. D. McCulloch. Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4):455–467, 1994.

    Article  PubMed  CAS  Google Scholar 

  54. Ryan, L. P., B. M. Jackson, H. Hamamoto, T. J. Eperjesi, T. J. Plappert, M. St John-Sutton, R. C. Gorman, and J. H. Gorman, III. The influence of annuloplasty ring geometry on mitral leaflet curvature. Ann. Thorac. Surg. 86(3):749–760, 2008; discussion 749–760.

    Article  PubMed  Google Scholar 

  55. Sacks, M. S., W. David Merryman, and D. E. Schmidt. On the biomechanics of heart valve function. J. Biomech. 42(12):1804–1824, 2009.

    Article  PubMed  Google Scholar 

  56. Sacks, M. S., Y. Enomoto, J. R. Graybill, W. D. Merryman, A. Zeeshan, A. P. Yoganathan, R. J. Levy, R. C. Gorman, and J. H. Gorman, III. In vivo dynamic deformation of the mitral valve anterior leaflet. Ann. Thorac. Surg. 82(4):1369–1377, 2006.

    Article  PubMed  Google Scholar 

  57. Sacks, M. S., H. Hamamoto, J. M. Connolly, R. C. Gorman, J. H. Gorman, III, and R. J. Levy. In vivo biomechanical assessment of triglycidylamine crosslinked pericardium. Biomaterials 28(35):5390–5398, 2007.

    Article  PubMed  CAS  Google Scholar 

  58. Sacks, M. S., Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, and A. P. Yoganathan. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 30(10):1281–1290, 2002.

    Article  PubMed  CAS  Google Scholar 

  59. Salgo, I. S., J. H. Gorman, III, R. C. Gorman, B. M. Jackson, F. W. Bowen, T. Plappert, M. G. St. John Sutton, and L. H. Edmunds, Jr. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106(6):711–717, 2002.

    Article  PubMed  Google Scholar 

  60. Smith, D. B., M. S. Sacks, D. A. Vorp, and M. Thornton. Surface geometric analysis of anatomic structures using biquintic finite element interpolation. Ann. Biomed. Eng. 28(6):598–611, 2000.

    Article  PubMed  CAS  Google Scholar 

  61. Stella, J. A., and M. S. Sacks. On the biaxial mechanical properties of the layers of the aortic valve leaflet. J. Biomech. Eng. 129(5):757–766, 2007.

    Article  PubMed  Google Scholar 

  62. Stephens, E. H., T. C. Nguyen, A. Itoh, N. B. Ingels, Jr., D. C. Miller, and K. J. Grande-Allen. The effects of mitral regurgitation alone are sufficient for leaflet remodeling. Circulation 118(14 Suppl):S243–S249, 2008.

    Article  PubMed  Google Scholar 

  63. Stephens, E. H., T. A. Timek, G. T. Daughters, J. J. Kuo, A. M. Patton, L. S. Baggett, N. B. Ingels, D. C. Miller, and K. J. Grande-Allen. Significant changes in mitral valve leaflet matrix composition and turnover with tachycardia-induced cardiomyopathy. Circulation 120(11 Suppl):S112–S119, 2009.

    Article  PubMed  CAS  Google Scholar 

  64. Taber, L. A. Biomechanics of cardiovascular development. Annu. Rev. Biomed. Eng. 3:1–25, 2001.

    Article  PubMed  CAS  Google Scholar 

  65. Taber, L. A., and J. D. Humphrey. Stress-modulated growth, residual stress, and vascular heterogeneity. J. Biomech. Eng. 123(6):528–535, 2001.

    Article  PubMed  CAS  Google Scholar 

  66. Vesely, I., A. Lozon, and E. Talman. Is zero-pressure fixation of bioprosthetic valves truly stress free? J. Thorac. Cardiovasc. Surg. 106(2):288–298, 1993.

    PubMed  CAS  Google Scholar 

  67. Vesely, I., and R. Noseworthy. Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J. Biomech. 25(1):101–113, 1992.

    Article  PubMed  CAS  Google Scholar 

  68. Wognum, S., D. E. Schmidt, and M. S. Sacks. On the mechanical role of de novo synthesized elastin in the urinary bladder wall. J. Biomech. Eng. 131(10):101018, 2009.

    Article  PubMed  Google Scholar 

  69. Yacoub, M., M. Halim, R. Radley-Smith, R. McKay, A. Nijveld, and M. Towers. Surgical treatment of mitral regurgitation caused by floppy valves: repair versus replacement. Circulation 64(2 Pt. 2):II210–II216, 1981.

    PubMed  CAS  Google Scholar 

  70. Zareian, R., K. P. Church, N. Saeidi, B. P. Flynn, J. W. Beale, and J. W. Ruberti. Probing collagen/enzyme mechanochemistry in native tissue with dynamic, enzyme-induced creep. Langmuir 26(12):9917–9926, 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research project was supported in part by grants from the National Heart, Lung and Blood Institute of the National Institute of Health, grant numbers F32HL110651, HL63954, and HL73021. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung and Blood Institute of the National Institute of Health. R. Gorman and J. Gorman are supported by individual Established Investigator Awards from the American Heart Association, Dallas, TX. The help from Christopher Caruthers is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amini, R., Eckert, C.E., Koomalsingh, K. et al. On the In Vivo Deformation of the Mitral Valve Anterior Leaflet: Effects of Annular Geometry and Referential Configuration. Ann Biomed Eng 40, 1455–1467 (2012). https://doi.org/10.1007/s10439-012-0524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0524-5

Keywords

Navigation