Skip to main content
Log in

In Vivo Dynamic Deformation of the Mitral Valve Annulus

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Though mitral valve (MV) repair surgical procedures have increased in the United States [Gammie, J. S., et al. Ann. Thorac. Surg. 87(5):1431–1437, 2009; Nowicki, E. R., et al. Am. Heart J. 145(6):1058–1062, 2003], studies suggest that altering MV stress states may have an effect on tissue homeostasis, which could impact the long-term outcome [Accola, K. D., et al. Ann. Thorac. Surg. 79(4):1276–1283, 2005; Fasol, R., et al. Ann. Thorac. Surg. 77(6):1985–1988, 2004; Flameng, W., P. Herijgers, and K. Bogaerts. Circulation 107(12):1609–1613, 2003; Gillinov, A. M., et al. Ann. Thorac. Surg. 69(3):717–721, 2000]. Improved computational modeling that incorporates structural and geometrical data as well as cellular components has the potential to predict such changes; however, the absence of important boundary condition information limits current efforts. In this study, novel high definition in vivo annular kinematic data collected from surgically implanted sonocrystals in sheep was fit to a contiguous 3D spline based on quintic-order hermite shape functions with C2 continuity. From the interpolated displacements, the annular axial strain and strain rate, bending, and twist along the entire annulus were calculated over the cardiac cycle. Axial strain was shown to be regionally and temporally variant with minimum and maximum values of −10 and 4%, respectively, observed. Similarly, regionally and temporally variant strain rate values, up to 100%/s contraction and 120%/s elongation, were observed. Both annular bend and twist data showed little deviation from unity with limited regional variations, indicating that most of the energy for deformation was associated with annular axial strain. The regionally and temporally variant strain/strain rate behavior of the annulus are related to the varied fibrous-muscle structure and contractile behavior of the annulus and surrounding ventricular structures, although specific details are still unavailable. With the high resolution shape and displacement information described in this work, high fidelity boundary conditions can be prescribed in future MV finite element models, leading to new insights into MV function and strategies for repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Accola, K. D., et al. Midterm outcomes using the physio ring in mitral valve reconstruction: experience in 492 patients. Ann. Thorac. Surg. 79(4):1276–1283, 2005; discussion 1276–1283.

    Article  PubMed  Google Scholar 

  2. Ahmad, R. M., et al. Annular geometry and motion in human ischemic mitral regurgitation: novel assessment with three-dimensional echocardiography and computer reconstruction. Ann. Thorac. Surg. 78(6):2063–2068, 2004; discussion 2068.

    Article  PubMed  Google Scholar 

  3. Anderson, R. H., et al. The myth of the aortic annulus: the anatomy of the subaortic outflow tract. Ann. Thorac. Surg. 52(3):640–646, 1991.

    PubMed  CAS  Google Scholar 

  4. Black, M. M., et al. A three-dimensional analysis of a bioprosthetic heart valve. J. Biomech. 24:793–801, 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Braunberger, E., et al. Very long-term results (more than 20 years) of valve repair with Carpentier’s techniques in nonrheumatic mitral valve insufficiency. Circulation 104(12 Suppl 1):I8–I11, 2001.

    PubMed  CAS  Google Scholar 

  6. Burriesci, G., I. C. Howard, and E. A. Patterson. Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves. J. Med. Eng. Technol. 23(6):203–215, 1999.

    Article  PubMed  CAS  Google Scholar 

  7. Cacciola, G., G. W. Peters, and F. P. Baaijens. A synthetic fiber-reinforced stentless heart valve. J. Biomech. 33(6):653–658, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Cacciola, G., G. W. Peters, and P. J. Schreurs. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J. Biomech. 33(5):521–530, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Caiani, E. G., et al. Evaluation of alterations on mitral annulus velocities, strain, and strain rates due to abrupt changes in preload elicited by parabolic flight. J. Appl. Physiol. 103(1):80–87, 2007.

    Article  PubMed  CAS  Google Scholar 

  10. Carpentier, A. Reconstructive valvuloplasty. A new technique of mitral valvuloplasty. Presse Med. 77(7):251–253, 1969.

    PubMed  CAS  Google Scholar 

  11. Fasol, R., et al. Mitral valve repair with the Colvin-Galloway Future Band. Ann. Thorac. Surg. 77(6):1985–1988, 2004; discussion 1988.

    Article  PubMed  Google Scholar 

  12. Filip, D. A., A. Radu, and M. Simionescu. Interstitial cells of the heart valve possess characteristics similar to smooth muscle cells. Circ. Res. 59(3):310–320, 1986.

    PubMed  CAS  Google Scholar 

  13. Flameng, W., P. Herijgers, and K. Bogaerts. Recurrence of mitral valve regurgitation after mitral valve repair in degenerative valve disease. Circulation 107(12):1609–1613, 2003.

    Article  PubMed  Google Scholar 

  14. Gammie, J. S., et al. Trends in mitral valve surgery in the United States: results from the Society of Thoracic Surgeons Adult Cardiac Surgery Database. Ann. Thorac. Surg. 87(5):1431–1437, 2009; discussion 1437–1439.

    Article  PubMed  Google Scholar 

  15. George, K., et al. Mitral annular myocardial velocity assessment of segmental left ventricular diastolic function after prolonged exercise in humans. J. Physiol. 569(Pt 1):305–313, 2005; (Epub 2005 Aug 18).

    Article  PubMed  CAS  Google Scholar 

  16. Gillinov, A. M., et al. Durability of mitral valve repair for degenerative disease. J. Thorac. Cardiovasc. Surg. 116(5):734–743, 1998.

    Article  PubMed  CAS  Google Scholar 

  17. Gillinov, A. M., et al. Cosgrove-Edwards Annuloplasty System: midterm results. Ann. Thorac. Surg. 69(3):717–721, 2000.

    Article  PubMed  CAS  Google Scholar 

  18. Goldsmith, I. R., G. Y. Lip, and R. L. Patel. A prospective study of changes in the quality of life of patients following mitral valve repair and replacement. Eur. J. Cardiothorac. Surg. 20(5):949–955, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. Gorman, 3rd, J. H., et al. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112(3):712–726, 1996.

    Article  PubMed  Google Scholar 

  20. Gould, P. L., et al. Stress analysis of the human aortic valve. Comput. Struct. 3:377, 1973.

    Article  Google Scholar 

  21. Hamid, M. S., H. N. Sabbah, and P. D. Stein. Influence of stent height upon stresses on the cusps of closed bioprosthetic valves. J. Biomech. 19:759–769, 1986.

    Article  PubMed  CAS  Google Scholar 

  22. Hashima, A. R., et al. Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog. J. Biomech. 26:19–35, 1993.

    Article  PubMed  CAS  Google Scholar 

  23. Hayashi, S. Y., et al. Analysis of mitral annulus motion measurements derived from M-mode, anatomic M-mode, tissue Doppler displacement, and 2-dimensional strain imaging. J. Am. Soc. Echocardiogr. 19(9):1092–1101, 2006.

    Article  PubMed  Google Scholar 

  24. Hinton, E., and D. R. J. Owen. An Introduction to Finite Element Computations (1st ed.). Swansea, UK: Pineridge Press Limited, p. 385, 1979

    Google Scholar 

  25. Ho, S. Y. Anatomy of the mitral valve. Heart 88(Suppl 4):iv5–iv10, 2002.

    PubMed  Google Scholar 

  26. Huang, X., et al. A two dimensional finite element analysis of a bioprosthetic heart valve. J. Biomech. 23:753–762, 1990.

    Article  PubMed  CAS  Google Scholar 

  27. Krucinski, S., et al. Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents. J. Biomech. 26:929–943, 1993.

    Article  PubMed  CAS  Google Scholar 

  28. Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc. Surg. 5(4):427–434, 1997.

    Article  PubMed  CAS  Google Scholar 

  29. Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Variations in annuloplasty ring and sizer dimensions may alter outcome in mitral valve repair. J. Card. Surg. 12(5):322–329, 1997.

    Article  PubMed  CAS  Google Scholar 

  30. Leat, M. E., and J. Fisher. Comparative study of the function of the Abiomed polyurethane heart valve for use in left ventricular assist devices. J. Biomed. Eng. 15(6):516–520, 1993.

    Article  PubMed  CAS  Google Scholar 

  31. Li, J., X. Y. Luo, and Z. B. Kuang. A nonlinear anisotropic model for porcine aortic heart valves. J. Biomech. 34(10):1279–1289, 2001.

    Article  PubMed  CAS  Google Scholar 

  32. Messier, Jr., R. H., et al. Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast. J. Surg. Res. 57(1):1–21, 1994.

    Article  PubMed  Google Scholar 

  33. Mulholland, D. L., and A. I. Gotlieb. Cell biology of valvular interstitial cells. Can. J. Cardiol. 12(3):231–236, 1996.

    PubMed  CAS  Google Scholar 

  34. Nowicki, E. R., et al. Mitral valve repair and replacement in northern New England. Am. Heart J. 145(6):1058–1062, 2003.

    Article  PubMed  Google Scholar 

  35. Quick, D. W., et al. Collagen synthesis is upregulated in mitral valves subjected to altered stress. ASAIO J. 43(3):181–186, 1997.

    Article  PubMed  CAS  Google Scholar 

  36. Rabkin, E., et al. Evolution of cell phenotype and extracellular matrix in tissue-engineered heart valves during in vitro maturation and in vivo remodeling. J. Heart Valve Dis. 11(3):308–314, 2002; discussion 314.

    PubMed  Google Scholar 

  37. Rabkin-Aikawa, E., et al. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J. Heart Valve Dis. 13(5):841–847, 2004.

    PubMed  Google Scholar 

  38. Sacks, M. S., et al. In vivo dynamic deformation of the mitral valve anterior leaflet. Ann. Thorac. Surg. 82(4):1369–1377, 2006.

    Article  PubMed  Google Scholar 

  39. Sacks, M. S., et al. In vivo biomechanical assessment of trigycidylamine crosslinked pericardium. Biomaterials 28(35):5390–5398, 2007.

    Article  PubMed  CAS  Google Scholar 

  40. Salgo, I. S., et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106(6):711–717, 2002.

    Article  PubMed  Google Scholar 

  41. Sands, M. P., et al. An anatomical comparison of human pig, calf, and sheep aortic valves. Ann. Thorac. Surg. 8(5):407–414, 1969.

    Article  PubMed  CAS  Google Scholar 

  42. Smith, D. B., et al. Surface geometric analysis of anatomic structures using biquintic finite element interpolation. Ann. Biomed. Eng. 28(6):598–611, 2000.

    Article  PubMed  CAS  Google Scholar 

  43. Stoylen, A., et al. Strain rate imaging in normal and reduced diastolic function: comparison with pulsed Doppler tissue imaging of the mitral annulus. J. Am. Soc. Echocardiogr. 14(4):264–274, 2001.

    Article  PubMed  CAS  Google Scholar 

  44. Sun, W., A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127(6):905–914, 2005.

    Article  PubMed  Google Scholar 

  45. Taylor, P. M., et al. The cardiac valve interstitial cell. Int. J. Biochem. Cell Biol. 35(2):113–118, 2003.

    Article  PubMed  CAS  Google Scholar 

  46. Timek, T. A., et al. Aorto-mitral annular dynamics. Ann. Thorac. Surg. 76(6):1944–1950, 2003.

    Article  PubMed  Google Scholar 

  47. Yacoub, M., et al. Surgical treatment of mitral regurgitation caused by floppy valves: repair versus replacement. Circulation 64(2 Pt 2):II210–II216, 1981.

    PubMed  CAS  Google Scholar 

  48. Young, A. A., P. J. Hunter, and B. H. Smaill. Estimation of epicardial strain using the motions of coronary bifurcations in biplane cineangiography. IEEE Trans. Biomed. Eng. 39(5):526–531, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by NIH Grant HL-073021NIH, an American Heart Association Pre-Doctoral Fellowship (CEE), the NIH/NIBIB T32 “Biomechanics in Regenerative Medicine” training Grant (NIBIB T32 EB003392-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks.

Additional information

Chad Eckert and Brett Zubiate contributed equally to this work.

Appendix

Appendix

Appendix A—Quintic Hermite Shape Functions

The six shape functions \( N_{\alpha }^{i} \) of the 1D quintic finite element used in this study are defined as follows24:

$$ \begin{aligned} N_{1}^{0} &= - {\frac{1}{16}}\left( {\xi - 1} \right)^{3} \left( {3\xi^{2} + 9\xi + 8} \right) \\ N_{1}^{1} &= - {\frac{1}{16}}\left( {\xi - 1} \right)^{3} \left( {3\xi + 5} \right)\left( {\xi + 1} \right) \\ N_{1}^{2} &= - {\frac{1}{16}}\left( {\xi - 1} \right)^{3} \left( {\xi + 1} \right)^{2} \\ N_{2}^{0} &= {\frac{1}{16}}\left( {\xi + 1} \right)^{3} \left( {3\xi^{2} - 9\xi + 8} \right) \\ N_{2}^{1} &= - {\frac{1}{16}}\left( {\xi + 1} \right)^{3} \left( {3\xi - 5} \right)\left( {\xi - 1} \right) \\ N_{2}^{2} &= {\frac{1}{16}}\left( {\xi + 1} \right)^{3} \left( {\xi - 1} \right)^{2} \\ \end{aligned} $$
(A.1)

where the subscript indicates the node number, the superscript the order of the derivative with respect to the local coordinate ξ, and the coordinate values at nodes 1 and 2 are −1 and 1, respectively.

Appendix B—Generalized Least Squares Regression

With the data properly oriented, the parameter estimation for the interpolation is done using the general matrix formulation for linear least squares. The function describing the component being fit is defined by:

$$ f = a_{0} \cdot \psi_{0}^{0} + a_{1} \cdot \psi_{1}^{0} + a_{2} \cdot \psi_{2}^{0} + a_{3} \cdot \psi_{0}^{1} + a \cdot \psi_{1}^{1} + a_{5} \cdot \psi_{2}^{1} + e $$
(B.1)

where e is error and [a] is a vector containing the nodal fit parameters for the function f. Expressed in matrix form the relationship can be written concisely as:

$$ \{f\} = [ \psi ]\{ A \} + \{ e\}. $$
(B.2)

In this case, f is the component of the data being fit (r(θ) or z(θ)) and e is the error associated with the fit at a given point. The rows of matrix [ψ] are the shape functions evaluated at there isoparametric coordinate corresponding to the data point observed. It can be shown that the minimization of the sum square of errors associated with the partial derivatives of f with respect to each of the parameters can be reduced to the following expression:

$$ [ \psi]^{\text{T}} [ \psi]\{A\} = \{ {[ \psi ]^{\text{T}}\{ f \}}\} $$
(B.3)

So the parameters are computed by simply inverting [ψ]T [ψ] and left multiplying both sides of the equation. After estimating the parameters for each element, the curve can be interpolated by evaluating the polynomials for each element at any point within the domain. In the case of smoothing via the Sobolev algorithm, the Sobolev penalty function is added to the matrix [ψ]T [ψ]. The nodal parameters for the smoothed fit are computed using:

$$ A = [ {[ \psi]^{\text{T}} [ \psi ] + S} ] ^{-1} \cdot [ {[ \psi ]^{\text{T}} f} ] $$
(B.4)

The described general matrix formulation for linear least squares is then used in the same manner to determine the parameters for each element.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckert, C.E., Zubiate, B., Vergnat, M. et al. In Vivo Dynamic Deformation of the Mitral Valve Annulus. Ann Biomed Eng 37, 1757–1771 (2009). https://doi.org/10.1007/s10439-009-9749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9749-3

Keywords

Navigation