Skip to main content

Advertisement

Log in

Geometric Variability of the Abdominal Aorta and Its Major Peripheral Branches

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Vessel geometry determines blood flow dynamics and plays a crucial role in the pathogenesis of vascular disease. In vivo assessment of three-dimensional (3D) vessel anatomy is vital to improve the realism of arterial flow model geometries and investigate factors associated with the localisation of atherosclerosis. The quantification of vascular geometry is also particularly important for the proper design and preclinical testing of endovascular devices used to treat peripheral arterial disease. The purpose of this study was to quantitatively evaluate the intersubject variability of 3D branching and curvature of the abdominal aorta and its major peripheral arteries. Contrast-enhanced renal MRA scans of healthy abdominal vessels obtained in 12 subjects (8 men, 4 women mean age 49 years, range 27–84 years) were segmented, and smoothed centerlines were determined as descriptors of arterial geometry. Robust techniques were employed to characterise non-planar vessel curvature, arterial taper, and 3D branching parameters. Noticeable 3D curvature and tapering were quantified for the proximal anterior visceral and renal branches. Mean 3D branching angles of 63.5 ± 10.1° and 73.1 ± 6.8° were established for the right and left renal arteries, respectively. Angles describing the ostial position and initial trajectory of the renal arteries confirmed the antero-lateral origin and direction of the right and the more lateral orientation of the left. The anterior visceral branches emerged predominantly from the left side of the anterior aortic wall. Branching parameters determined at the aortic bifurcation demonstrated mild asymmetry and non-planarity at this location. In summary, the results from this study address the scarcity of available in vivo 3D quantitative geometric data relating to the abdominal vasculature and reflect the geometric variability in living subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ajmani, M. L., and K. Ajmani. To study the intrarenal vascular segments of human kidney by corrosion cast technique. Anat. Anz. 154:293–303, 1983.

    PubMed  CAS  Google Scholar 

  2. Antiga, L., and D. A. Steinman. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans. Med. Imaging 23:704–713, 2004.

    Article  PubMed  Google Scholar 

  3. Aubert, J., and K. Koumare. Variations of origin of the renal artery: a review covering 403 aortographies. Eur. Urol. 1:182–188, 1975.

    PubMed  CAS  Google Scholar 

  4. Aytac, S. K., H. Yigit, T. Sancak, and H. Ozcan. Correlation between the diameter of the main renal artery and the presence of an accessory renal artery: sonographic and angiographic evaluation. J. Ultrasound Med. 22:433–439, 2003.

    PubMed  Google Scholar 

  5. Baden, J. G., D. J. Racy, and T. M. Grist. Contrast-enhanced three-dimensional magnetic resonance angiography of the mesenteric vasculature. J. Magn. Reson. Imaging 10:369–375, 1999.

    Article  PubMed  CAS  Google Scholar 

  6. Bargeron, C. B., G. M. Hutchins, G. W. Moore, O. J. Deters, F. F. Mark, and M. H. Friedman. Distribution of the geometric parameters of human aortic bifurcations. Arteriosclerosis 6:109–113, 1986.

    PubMed  CAS  Google Scholar 

  7. Baumgartner, I., K. von Aesch, D. D. Do, J. Triller, M. Birrer, and F. Mahler. Stent placement in ostial and nonostial atherosclerotic renal arterial stenoses: a prospective follow-up study. Radiology 216:498–505, 2000.

    PubMed  CAS  Google Scholar 

  8. Bekkers, E. J., and C. A. Taylor. Multiscale vascular surface model generation from medical imaging data using hierarchical features. IEEE Trans. Med. Imaging 27:331–341, 2008.

    Article  PubMed  Google Scholar 

  9. Beregi, J. P., B. Mauroy, S. Willoteaux, C. Mounier-Vehier, M. Remy-Jardin, and J. Francke. Anatomic variation in the origin of the main renal arteries: spiral CTA evaluation. Eur. Radiol. 9:1330–1334, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. Caro, C. G., D. J. Doorly, M. Tarnawski, K. T. Scott, Q. Long, and C. L. Dumoulin. Non-planar curvature and branching of arteries and non-planar-type flow. Proc. R. Soc. Lond. 452:185–197, 1996.

    Article  Google Scholar 

  11. Cebral, J. R., and R. Lohner. From medical images to anatomically accurate finite element grids. Int. J. Numer. Methods Eng. 51:985–1008, 2001.

    Article  Google Scholar 

  12. Choi, G., C. P. Cheng, N. M. Wilson, and C. A. Taylor. Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Ann. Biomed. Eng. 37:14–33, 2009.

    Article  PubMed  Google Scholar 

  13. Choi, G., L. K. Shin, C. A. Taylor, and C. P. Cheng. In vivo deformation of the human abdominal aorta and common iliac arteries with hip and knee flexion: implications for the design of stent-grafts. J. Endovasc. Ther. 16:531–538, 2009.

    Article  PubMed  Google Scholar 

  14. Cornhill, J. F., E. E. Herderick, and H. C. Stary. Topography of human aortic sudanophilic lesions. Monogr. Atheroscler. 15:13–19, 1990.

    PubMed  CAS  Google Scholar 

  15. DeBakey, M. E., G. M. Lawrie, and D. H. Glaeser. Patterns of atherosclerosis and their surgical significance. Ann. Surg. 201:115–131, 1985.

    Article  PubMed  CAS  Google Scholar 

  16. Draney, M. T., C. K. Zarins, and C. A. Taylor. Three-dimensional analysis of renal artery bending motion during respiration. J. Endovasc. Ther. 12:380–386, 2005.

    Article  PubMed  Google Scholar 

  17. Fanucci, E., A. Orlacchio, and M. Pocek. The vascular geometry of human arterial bifurcations. Invest. Radiol. 23:713–718, 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Fleischmann, D., T. J. Hastie, F. C. Dannegger, D. S. Paik, M. Tillich, C. K. Zarins, and G. D. Rubin. Quantitative determination of age-related geometric changes in the normal abdominal aorta. J. Vasc. Surg. 33:97–105, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. Friedman, M. H., O. J. Deters, F. F. Mark, C. B. Bargeron, and G. M. Hutchins. Arterial geometry affects hemodynamics. A potential risk factor for athersoclerosis. Atherosclerosis 46:225–231, 1983.

    Article  PubMed  CAS  Google Scholar 

  20. Garcier, J. M., B. De Fraissinette, M. Filaire, P. Gayard, T. Therre, A. Ravel, and L. Boyer. Origin and initial course of the renal arteries: a radiological study. Surg. Radiol. Anat. 23:51–55, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. Geboes, K., K. P. Geboes, and G. Maleux. Vascular anatomy of the gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 15:1–14, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Glagov, S., D. A. Rowley, and R. I. Kohut. Atherosclerosis of human aorta and its coronary and renal arteries. A consideration of some hemodynamic factors which may be related to the marked differences in atherosclerotic involvement of the coronary and renal arteries. Arch. Pathol. 72:558–571, 1961.

    PubMed  CAS  Google Scholar 

  23. Hirsch, A. T., Z. J. Haskal, N. R. Hertzer, C. W. Bakal, M. A. Creager, J. L. Halperin, L. F. Hiratzka, W. R. Murphy, J. W. Olin, J. B. Puschett, K. A. Rosenfield, D. Sacks, J. C. Stanley, L. M. Taylor, Jr., C. J. White, J. White, R. A. White, E. M. Antman, S. C. Smith, Jr., C. D. Adams, J. L. Anderson, D. P. Faxon, V. Fuster, R. J. Gibbons, S. A. Hunt, A. K. Jacobs, R. Nishimura, J. P. Ornato, R. L. Page, and B. Riegel. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 113:e463–e654, 2006.

    Google Scholar 

  24. Horejs, D., P. M. Gilbert, S. Burstein, and R. L. Vogelzang. Normal aortoiliac diameters by CT. J. Comput. Assist. Tomogr. 12:602–603, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Jeays, A. D., P. V. Lawford, R. Gillott, P. Spencer, D. C. Barber, K. D. Bardhan, and D. R. Hose. Characterisation of the haemodynamics of the superior mesenteric artery. J. Biomech. 40:1916–1926, 2007.

    Article  PubMed  CAS  Google Scholar 

  26. Kaatee, R., F. J. Beek, E. J. Verschuyl, P. J. vd Ven, J. J. Beutler, J. P. van Schaik, and W. P. Mali. Atherosclerotic renal artery stenosis: ostial or truncal? Radiology 199:637–640, 1996.

    PubMed  CAS  Google Scholar 

  27. Kahraman, H., M. Ozaydin, E. Varol, S. M. Aslan, A. Dogan, A. Altinbas, M. Demir, O. Gedikli, G. Acar, and O. Ergene. The diameters of the aorta and its major branches in patients with isolated coronary artery ectasia. Tex. Heart Inst. J. 33:463–468, 2006.

    PubMed  Google Scholar 

  28. Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247, 1993.

    PubMed  CAS  Google Scholar 

  29. Kosinski, H. Variability of places of origin of the human renal arteries. Folia Morphol. (Warsz) 53:111–116, 1994.

    CAS  Google Scholar 

  30. Ku, D. N., S. Glagov, J. E. Moore, Jr., and C. K. Zarins. Flow patterns in the abdominal aorta under simulated postprandial and exercise conditions: an experimental study. J. Vasc. Surg. 9:309–316, 1989.

    Article  PubMed  CAS  Google Scholar 

  31. Ladak, H. M., J. S. Milner, and D. A. Steinman. Rapid three-dimensional segmentation of the carotid bifurcation from serial MR images. J. Biomech. Eng. 122:96–99, 2000.

    Article  PubMed  CAS  Google Scholar 

  32. Lederle, F. A., G. R. Johnson, S. E. Wilson, I. L. Gordon, E. P. Chute, F. N. Littooy, W. C. Krupski, D. Bandyk, G. W. Barone, L. M. Graham, R. J. Hye, and D. B. Reinke. Relationship of age, gender, race, and body size to infrarenal aortic diameter. The Aneurysm Detection and Management (ADAM) Veterans Affairs Cooperative Study Investigators. J. Vasc. Surg. 26:595–601, 1997.

    Article  PubMed  CAS  Google Scholar 

  33. Lee, D., and J. Y. Chen. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches. J. Biomech. 35:1115–1122, 2002.

    Article  PubMed  CAS  Google Scholar 

  34. Lee, Y. T., W. F. Keitzer, F. R. Watson, and H. Liu. Vascular geometry at the abdominal aortic bifurcation. J. Am. Med. Women Assoc. 37:77–81, 1982.

    CAS  Google Scholar 

  35. Liepsch, D., A. Poll, J. Strigberger, H. N. Sabbah, and P. D. Stein. Flow visualization studies in a mold of the normal human aorta and renal arteries. J. Biomech. Eng. 111:222–227, 1989.

    Article  PubMed  CAS  Google Scholar 

  36. Lilly, M. P., T. R. Harward, W. R. Flinn, D. R. Blackburn, P. M. Astleford, and J. S. Yao. Duplex ultrasound measurement of changes in mesenteric flow velocity with pharmacologic and physiologic alteration of intestinal blood flow in man. J. Vasc. Surg. 9:18–25, 1989.

    Article  PubMed  CAS  Google Scholar 

  37. Long, Q., X. Y. Xu, M. Bourne, and T. M. Griffith. Numerical study of blood flow in an anatomically realistic aorto-iliac bifurcation generated from MRI data. Magn. Reson. Med. 43:565–576, 2000.

    Article  PubMed  CAS  Google Scholar 

  38. Longia, G. S., V. Kumar, and C. D. Gupta. Intrarenal arterial pattern of human kidney-corrosion cast study. Anat. Anz. 155:183–194, 1984.

    PubMed  CAS  Google Scholar 

  39. MacLean, N. F., and M. R. Roach. Thickness, taper, and ellipticity in the aortoiliac bifurcation of patients aged 1 day to 76 years. Heart Vessels 13:95–101, 1998.

    Article  PubMed  CAS  Google Scholar 

  40. Moore, Jr., J., and J. L. Berry. Fluid and solid mechanical implications of vascular stenting. Ann. Biomed. Eng. 30:498–508, 2002.

    Article  PubMed  Google Scholar 

  41. Moore, Jr., J. E., and D. N. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. J. Biomech. Eng. 116:337–346, 1994.

    Article  PubMed  Google Scholar 

  42. Moore, Jr., J. E., and D. N. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under simulated exercise and postprandial conditions. J. Biomech. Eng. 116:107–111, 1994.

    Article  PubMed  Google Scholar 

  43. Moore, Jr., J. E., D. N. Ku, C. K. Zarins, and S. Glagov. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis. J. Biomech. Eng. 114:391–397, 1992.

    Article  PubMed  Google Scholar 

  44. Moreno, M. R., J. E. Moore, Jr., and R. Meuli. Cross-sectional deformation of the aorta as measured with magnetic resonance imaging. J. Biomech. Eng. 120:18–21, 1998.

    Article  PubMed  CAS  Google Scholar 

  45. Nguyen, N. D., and A. K. Haque. Effect of hemodynamic factors on atherosclerosis in the abdominal aorta. Atherosclerosis 84:33–39, 1990.

    Article  PubMed  CAS  Google Scholar 

  46. O’Flynn, P. M., G. O’Sullivan, and A. S. Pandit. Methods for three-dimensional geometric characterization of the arterial vasculature. Ann. Biomed. Eng. 35:1368–1381, 2007.

    Article  PubMed  Google Scholar 

  47. Ozan, H., A. Alemdaroglu, A. Sinav, and Y. Gumusalan. Location of the ostia of the renal arteries in the aorta. Surg. Radiol. Anat. 19:245–247, 1997.

    Article  PubMed  CAS  Google Scholar 

  48. Pedersen, E. M., H. W. Sung, A. C. Burlson, and A. P. Yoganathan. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions. J. Biomech. 26:1237–1247, 1993.

    Article  PubMed  CAS  Google Scholar 

  49. Pedersen, E. M., H. W. Sung, and A. P. Yoganathan. Influence of abdominal aortic curvature and resting versus exercise conditions on velocity fields in the normal abdominal aortic bifurcation. J. Biomech. Eng. 116:347–354, 1994.

    Article  PubMed  CAS  Google Scholar 

  50. Pedersen, E. M., A. P. Yoganathan, and X. P. Lefebvre. Pulsatile flow visualization in a model of the human abdominal aorta and aortic bifurcation. J. Biomech. 25:935–944, 1992.

    Article  PubMed  CAS  Google Scholar 

  51. Pedersen, O. M., A. Aslaksen, and H. Vik-Mo. Ultrasound measurement of the luminal diameter of the abdominal aorta and iliac arteries in patients without vascular disease. J. Vasc. Surg. 17:596–601, 1993.

    Article  PubMed  CAS  Google Scholar 

  52. Pennington, N., and R. W. Soames. The anterior visceral branches of the abdominal aorta and their relationship to the renal arteries. Surg. Radiol. Anat. 27:395–403, 2005.

    Article  PubMed  Google Scholar 

  53. Perktold, K., and M. Resch. Numerical flow studies in human carotid artery bifurcations: basic discussion of the geometric factor in atherogenesis. J. Biomed. Eng. 12:111–123, 1990.

    Article  PubMed  CAS  Google Scholar 

  54. Roberts, J. C., C. Moses, and R. H. Wilkins. Autopsy studies in atherosclerosis. 1. Distribution and severity of atherosclerosis in patients dying without morphologic evidence of atherosclerotic catastrophe. Circulation 20:511–519, 1959.

    Google Scholar 

  55. Robertson, S. W., D. B. Jessup, I. J. Boero, and C. P. Cheng. Right renal artery in vivo stent fracture. J. Vasc. Interv. Radiol. 19:439–442, 2008.

    Article  PubMed  Google Scholar 

  56. Rocha-Singh, K., M. R. Jaff, and K. Rosenfield. Evaluation of the safety and effectiveness of renal artery stenting after unsuccessful balloon angioplasty: the ASPIRE-2 study. J. Am. Coll. Cardiol. 46:776–783, 2005.

    Article  PubMed  Google Scholar 

  57. Rubin, G. D., E. J. Alfrey, M. D. Dake, C. P. Semba, F. G. Sommer, P. C. Kuo, D. C. Dafoe, J. A. Waskerwitz, D. A. Bloch, and R. B. Jeffrey. Assessment of living renal donors with spiral CT. Radiology 195:457–462, 1995.

    PubMed  CAS  Google Scholar 

  58. Sabbah, H. N., E. T. Hawkins, and P. D. Stein. Flow separation in the renal arteries. Arteriosclerosis 4:28–33, 1984.

    PubMed  CAS  Google Scholar 

  59. Shipkowitz, T., V. G. Rodgers, L. J. Frazin, and K. B. Chandran. Numerical study on the effect of steady axial flow development in the human aorta on local shear stresses in abdominal aortic branches. J. Biomech. 31:995–1007, 1998.

    Article  PubMed  CAS  Google Scholar 

  60. Shipkowitz, T., V. G. Rodgers, L. J. Frazin, and K. B. Chandran. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches. J. Biomech. 33:717–728, 2000.

    Article  PubMed  CAS  Google Scholar 

  61. Smedby, O. Geometrical risk factors for atherosclerosis in the femoral artery: a longitudinal angiographic study. Ann. Biomed. Eng. 26:391–397, 1998.

    Article  PubMed  CAS  Google Scholar 

  62. Sonesson, B., T. Lanne, F. Hansen, and T. Sandgren. Infrarenal aortic diameter in the healthy person. Eur. J. Vasc. Surg. 8:89–95, 1994.

    Article  PubMed  CAS  Google Scholar 

  63. Sun, H., B. D. Kuban, P. Schmalbrock, and M. H. Friedman. Measurement of the geometric parameters of the aortic bifurcation from magnetic resonance images. Ann. Biomed. Eng. 22:229–239, 1994.

    Article  PubMed  CAS  Google Scholar 

  64. Suzuki, Y., F. Ikeno, J. K. Lyons, T. Koizumi, and A. C. Yeung. Novel stent system for accurate placement in aorto-ostial renal artery disease: preclinical study in porcine renal artery model. Cardiovasc. Revasc. Med. 8:99–102, 2007.

    Article  PubMed  Google Scholar 

  65. Tada, S., and J. M. Tarbell. A computational study of flow in a compliant carotid bifurcation-stress phase angle correlation with shear stress. Ann. Biomed. Eng. 33:1202–1212, 2005.

    Article  PubMed  CAS  Google Scholar 

  66. Talenfeld, A. D., R. B. Schwope, H. J. Alper, E. I. Cohen, and R. A. Lookstein. MDCT angiography of the renal arteries in patients with atherosclerotic renal artery stenosis: implications for renal artery stenting with distal protection. Am. J. Roentgenol. 188:1652–1658, 2007.

    Article  Google Scholar 

  67. Tang, B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart Circ. Physiol. 291:H668–H676, 2006.

    Article  PubMed  CAS  Google Scholar 

  68. Tanganelli, P., G. Bianciardi, C. Simoes, V. Attino, B. Tarabochia, and G. Weber. Distribution of lipid and raised lesions in aortas of young people of different geographic origins (WHO-ISFC PBDAY Study). World Health Organization-International Society and Federation of Cardiology. Pathobiological Determinants of Atherosclerosis in Youth. Arterioscler. Thromb. 13:1700–1710, 1993.

    PubMed  CAS  Google Scholar 

  69. Taylor, C. A., T. J. Hughes, and C. K. Zarins. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann. Biomed. Eng. 26:975–987, 1998.

    Article  PubMed  CAS  Google Scholar 

  70. Taylor, C. A., T. J. Hughes, and C. K. Zarins. Effect of exercise on hemodynamic conditions in the abdominal aorta. J. Vasc. Surg. 29:1077–1089, 1999.

    Article  PubMed  CAS  Google Scholar 

  71. Thatipelli, M. R., E. A. Sabater, H. Bjarnason, M. A. McKusick, and S. Misra. CT angiography of renal artery anatomy for evaluating embolic protection devices. J. Vasc. Interv. Radiol. 18:842–846, 2007.

    Article  PubMed  Google Scholar 

  72. Thomas, J. B., L. Antiga, S. L. Che, J. S. Milner, D. A. Steinman, J. D. Spence, and B. K. Rutt. Variation in the carotid bifurcation geometry of young versus older adults: implications for geometric risk of atherosclerosis. Stroke 36:2450–2456, 2005.

    Article  PubMed  Google Scholar 

  73. Thomas, J. B., J. S. Milner, and D. A. Steinman. On the influence of vessel planarity on local hemodynamics at the human carotid bifurcation. Biorheology 39:443–448, 2002.

    PubMed  Google Scholar 

  74. Timmins, L. H., C. A. Meyer, M. R. Moreno, and J. E. Moore, Jr. Mechanical modeling of stents deployed in tapered arteries. Ann. Biomed. Eng. 36:2042–2050, 2008.

    Article  PubMed  Google Scholar 

  75. Verschuyl, E. J., R. Kaatee, F. J. Beek, G. Pasterkamp, W. H. Bush, J. J. Beutler, P. J. van der Ven, and W. P. Mali. Renal artery origins: location and distribution in the transverse plane at CT. Radiology 203:71–75, 1997.

    PubMed  CAS  Google Scholar 

  76. Wake, A. K., J. N. Oshinski, A. R. Tannenbaum, and D. P. Giddens. Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation. J. Biomech. Eng. 131:021013, 2009.

    Article  PubMed  Google Scholar 

  77. Weld, K. J., S. B. Bhayani, J. Belani, C. D. Ames, G. Hruby, and J. Landman. Extrarenal vascular anatomy of kidney: assessment of variations and their relevance to partial nephrectomy. Urology 66:985–989, 2005.

    Article  PubMed  Google Scholar 

  78. Wijesinghe, L. D., D. J. Scott, and D. Kessel. Analysis of renal artery geometry may assist in the design of new stents for endovascular aortic aneurysm repair. Br. J. Surg. 84:797–799, 1997.

    Article  PubMed  CAS  Google Scholar 

  79. Wood, N. B., S. Z. Zhao, A. Zambanini, M. Jackson, W. Gedroyc, S. A. Thom, A. D. Hughes, and X. Y. Xu. Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. J. Appl. Physiol. 101:1412–1418, 2006.

    Article  PubMed  CAS  Google Scholar 

  80. Yahel, J., and B. Arensburg. The topographic relationships of the unpaired visceral branches of the aorta. Clin. Anat. 11:304–309, 1998.

    Article  PubMed  CAS  Google Scholar 

  81. Yim, P. J., J. R. Cebral, A. Weaver, R. J. Lutz, O. Soto, G. B. Vasbinder, V. B. Ho, and P. L. Choyke. Estimation of the differential pressure at renal artery stenoses. Magn. Reson. Med. 51:969–977, 2004.

    Article  PubMed  Google Scholar 

  82. Zhu, H., Z. Ding, R. N. Piana, T. R. Gehrig, and M. H. Friedman. Cataloguing the geometry of the human coronary arteries: a potential tool for predicting risk of coronary artery disease. Int. J. Cardiol. 135:43–52, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Ms. Geraldine Dowd, Clinical Specialist Radiographer, University College Hospital, Galway for her help, and James Coburn for his technical expertise. This study was supported with funds from Irish Research Council for Science, Engineering, and Technology (IRCSET): funded by the National Development Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay S. Pandit.

Additional information

Associate Editor Michael B. Lawrence oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Flynn, P.M., O’Sullivan, G. & Pandit, A.S. Geometric Variability of the Abdominal Aorta and Its Major Peripheral Branches. Ann Biomed Eng 38, 824–840 (2010). https://doi.org/10.1007/s10439-010-9925-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9925-5

Keywords

Navigation