Skip to main content
Log in

A Computational Study of Flow in a Compliant Carotid Bifurcation–Stress Phase Angle Correlation with Shear Stress

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The present study presents a three-dimensional, unsteady supercomputer simulation of the coupled fluid–solid interaction problem associated with flow through a compliant model of the bifurcation of the common carotid artery into the internal and external carotid arteries. The fluid wall shear stress (WSS) and solid circumferential stress/strain (CS) are computed and analyzed for the first time using the complex ratio of CS to WSS (CS/WSS). This analysis reveals a large negative phase angle between CS and WSS (stress phase angle—SPA) on the outer wall of the carotid sinus where atherosclerotic plaques are localized. This finding is consistent with other measurements and computations of the SPA in coronary arteries and the aortic bifurcation that show large negative SPA correlating with sites of plaque location and in vitro studies of endothelial cells showing that large negative SPA induces pro-atherogenic gene expression and metabolite release profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anayiotos A. S., S. A. Jones, D. P. Giddens, S. Glagov, and C. K. Zarins. Shear stress at a compliant model of the human carotid bifurcation. Trans ASME J. Biomech. Eng. 116:98–106, 1994.

    Google Scholar 

  2. Atabek H. B., S. C. Ling, and D. J. Patel. Analysis of coronary flow fields in thoracotomized dogs. Circ. Eng. 107:307–315, 1975.

    Google Scholar 

  3. Bella J. N., M. J. Roman, R. Pini, J. E. Schwartz, T. G. Pickering, and R. B. Devereux. Assessment of arterial compliance by carotid midwall strain-stress relation in normotensive adults. Hypertension 33:787–792, 1999.

    PubMed  Google Scholar 

  4. Bharadvaj B. K., R. F. Mabon, and D. P. Giddens. Steady flow in a model of the human carotid bifurcation part I—flow visualization. J. Biomech. 15:349–362, 1982.

    Article  PubMed  Google Scholar 

  5. Botnar R., G. Rappitsch, M. B. Scheidegger, D. Liepsch, K. Perktold, and P. Boesiger. Hemodynamics in the carotid artery bifurcation: A comparison between numerical simulations and in vitro MRI measurements. J. Biomech. 33:137–144, 2000.

    Article  PubMed  Google Scholar 

  6. Cebral J. R., P. J. Yim, R. Lohner, O. Soto, and P. L. Choyke. Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging. Acad. Radiol. 9:1286–1299, 2002.

    Article  PubMed  Google Scholar 

  7. Chien S. Molecular and mechanical bases of focal lipid accumulation in arterial wall. Prog. Biophys. Mol. Biol. 83:131–151, 2003.

    Article  PubMed  Google Scholar 

  8. Dai G., M. R. Kaazempur-Mofrad, S. Natarajan, Y. Zhang, S. Vaughn, B. R. Blackman, R. D. Kamm, G. Garcia-Cardeña, and M. A. Gimbrone, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and—resistant regions of human vasculature. Proc. Natl. Acad. Sci. U.S.A. 101:14871–14876, 2004.

    Article  PubMed  Google Scholar 

  9. Dancu M. B., and J. M. Tarbell. Large negative stress phase angle (SPA) attenuates nitric oxide production in bovine aortic endothelial cells. Trans. ASME J. Biomech. Eng., in press.

  10. Davies P. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.

    PubMed  Google Scholar 

  11. Delfino A., N. Stergioopulos, J. E. Moore Jr, and J. J. Meister. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30:777–786, 1997.

    Article  PubMed  Google Scholar 

  12. He X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: Average conditions. Trans. ASME J. Biomech. Eng. 118:74–82, 1996.

    Google Scholar 

  13. Holdworth D. W., C. J. D. Norley, R. Frayne, D. A. Steinman, and B. K. Rutt. Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiol. Meas. 20:219–240, 1999.

    Article  PubMed  Google Scholar 

  14. Hyun S., C. Kleinstreuer, and J. P. Archie Jr. Computational analysis of effects of external carotid artery flow and occlusion on adverse carotid bifurcation hemodynamics. J. Vasc. Surg. 37:1248–1254, 2003.

    Article  PubMed  Google Scholar 

  15. Joshi A. K., R. L. Leask, J. G. Myers, M. Ojha, J. Butany and C. R. Ethier. Intimal thickness is not associated with wall shear stress patterns in the human right coronary artery. Arterioscler. Thromb. Vasc. Biol. 24:2408–2413, 2004.

    Article  PubMed  Google Scholar 

  16. Kaluzynski K., T. Powalowski, B. Lesniak, Z. Trawinski, T. Palko, and D. Liepsch. Studies of arterial input impedance in models of carotid artery. J. Mech. Med. Biol. 3:9–19, 2003.

    Article  Google Scholar 

  17. Ku D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302, 1985.

    PubMed  Google Scholar 

  18. Lee C. S., and J. M. Tarbell. Influence of vasoactive drugs on wall shear stress distribution in the abdominal aortic bifurcation: An in vitro study. Ann. Biomed. Eng. 26:200–212, 1998.

    Article  PubMed  Google Scholar 

  19. Ma P. P., X. M. Li, and D. N. Ku. Convective mass transfer at the carotid bifurcation. J. Biomech. 30:565–571, 1997.

    Article  PubMed  Google Scholar 

  20. Maeda N., Y. Sawayama, M. Tatsukawa, K. Okada, N. Furusyo, M. Shigematsu, S. Kashiwagi, and J. Hayashi. Carotid artery lesions and atherosclerotic risk factors in Japanese hemodynamics patients. Atherosclerosis 169:183–192, 2003.

    Article  PubMed  Google Scholar 

  21. Milner J. S., J. A. Moore, B. K. Rutt, and D. A. Steinman. Hemodynamics of human carotid artery bifurcations: Computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 27:143–156, 1998.

    Google Scholar 

  22. Milnor W. R. Hemodynamics. Baltimore, MD: Williams and Wilkins, 1989, pp.167–181.

    Google Scholar 

  23. Moore J. A., D. A. Steinman, D. W. Holdworth, and C. R. Ethier. Accuracy of computational hemodynamics in complex arterial geometries reconstructed flow magnetic resonance imaging. Ann. Biomed. Eng. 27:32–41, 1999.

    Article  PubMed  Google Scholar 

  24. Ojha M., R. L. Leask, J. Butany, and K. W. Johnson. Distribution of intimal and medial thickening in the human right coronary artery: A study of 17 RCAs. Atherosclerosis 158:147–153, 2001.

    Article  PubMed  Google Scholar 

  25. Papathanasopoulou P., S. Zhao, U. Koehler, M. B. Robertson, Q. Long, P. Hoskins, X. Y. Xu, and I. Marshall. MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. J. Magn. Reson. Imaging 17:153–162, 2003.

    Article  PubMed  Google Scholar 

  26. Perktold K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28:845–856, 1995.

    Article  PubMed  Google Scholar 

  27. Qiu Y., and J. M. Tarbell. Interaction between wall shear stress and circumferential strain affects endothelial cell biochemical production. J. Vasc. Res. 37:147–157, 2003.

    Article  Google Scholar 

  28. Qiu Y., and J. M. Tarbell. Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. Trans. ASME J. Biomech. Eng. 122:77–85, 2000.

    Google Scholar 

  29. Ramnarine K. V., T. Hartshorne, Y. Sensier, M. Naylor, J. Walker, A. R. Naylor, R. B. Panerai, and D. H. Evans. Tissue Doppler imaging of carotid plaque wall motion: A pilot study. Cardiovasc. Ultrasound 1:1–15, 2003.

    Article  PubMed  Google Scholar 

  30. Salzer R. S., M. J. Thubrikar, and R. T. Eppink. Pressure-induced mechanical stress in the carotid artery bifurcation: A possible correlation to atherosclerosis. J. Biomech. 28:1333–1340, 1995.

    Article  PubMed  Google Scholar 

  31. Schulz U. G. R., and P. M. Rothwell. Major variation in carotid bifurcation anatomy—a possible risk factor for plaque development. Stroke 32:2522–2529, 2001.

    PubMed  Google Scholar 

  32. Selzer R. H., W. J. Mack, P. L. Lee, H. Kwong-Fu, and H. N. Hodis. Improved common carotid elasticity and intima-media thickness measurements from computer analysis of sequential ultrasound frames. Athrosclerosis 154:185–193, 2001.

    Article  Google Scholar 

  33. Sitzer M., D. Puac, A. Buehler, D. A. Steckel, S. von Kegler, H. S. Markus, and H. Steinmetz. Internal carotid artery angle of origin: A novel risk factor for early carotid atherosclerosis. Stroke 34:950–955, 2003.

    Article  PubMed  Google Scholar 

  34. Stadler R. W., J. A. Taylor, and R. S. Lees. Comparison of B-mode, M-mode and Echo-tracking methods for measurement of the arterial distension waveform. Ultrasound Med. Biol. 23:879–887, 1997.

    Article  PubMed  Google Scholar 

  35. Steinman D. A., J. B. Thomas, H. M. Ladak, J. S. Milner, B. K. Rutt, and J. D. Spence. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med. 47:149–159, 2002.

    Article  PubMed  Google Scholar 

  36. Sun Y., C. H. Lin, C. J. Lu, P. K. Yip, and R. C. Chen. Carotid atherosclerosis, intima media thickness and risk factors—an analysis of 1781 asymptomatic subjects in Taiwan. Atherosclerosis 164:89–94, 2002.

    Article  PubMed  Google Scholar 

  37. Thomas J. B., J. S. Milner, and D. A. Steinman. On the influence of vessel planarity on local hemodynamics at the human carotid bifurcation. Biorheology 39:443–448, 2002.

    PubMed  Google Scholar 

  38. Urbina E. M., S. R. Srinivasan, R. Tang, M. G. Bond, L. Kieltyka, and G. S. Berenson. Impact of multiple coronary risk factors on the intima-media thickness of different segments of carotid artery in healthy young adults (The Bogalusa Heart Study). Am. J. Cardiol. 90:953–958, 2002.

    Article  PubMed  Google Scholar 

  39. Wang D. M., and J. M. Tarbell. Nonlinear analysis of oscillatory flow with a nonzero mean, in an elastic tube (artery). Trans. ASME J. Biomech. Eng. 117:127–135, 1995.

    Google Scholar 

  40. Younis H. F., M. R. Kaazempur-Mofrad, C. Chung, R. C. Chan, and R. D. Kamm. Computational analysis of the effects of exercise on hemodynamics in the carotid bifurcation. Ann. Biomed. Eng. 13:995–1006, 2003.

    Article  Google Scholar 

  41. Zarins C. K., D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53:502–514, 1983.

    PubMed  Google Scholar 

  42. Zhao S. Z., B. Ariff, Q. Long, A. D. Hughes, S. A. Thom, A. V. Stanton, and X. Y. Xu. Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. J. Biomech. 35:1367–1377, 2002.

    Article  PubMed  Google Scholar 

  43. Zhao S. Z., X. Y. Xu, A. D. Hughes, S. A. Thom, A. V. Stanton, B. Ariff, and Q. Long. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33:975–984, 2000.

    Article  PubMed  Google Scholar 

  44. Zulliger M. A., N. T. M. R. Kwak, T. Tsapikouni, and N. Stergiopulos. Effects of longitudinal stretch on VSM tone and distensibility of muscular conduit arteries. Am. J. Physiol. Heart Circ. Physiol. 283:H2599–H2605, 2002.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Tarbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tada, S., Tarbell, J.M. A Computational Study of Flow in a Compliant Carotid Bifurcation–Stress Phase Angle Correlation with Shear Stress. Ann Biomed Eng 33, 1202–1212 (2005). https://doi.org/10.1007/s10439-005-5630-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-5630-1

Keywords

Navigation