Skip to main content

Advertisement

Log in

Determination of the Critical Buckling Pressure of Blood Vessels Using the Energy Approach

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The stability of blood vessels under lumen blood pressure is essential to the maintenance of normal vascular function. Differential buckling equations have been established recently for linear and nonlinear elastic artery models. However, the strain energy in bent buckling and the corresponding energy method have not been investigated for blood vessels under lumen pressure. The purpose of this study was to establish the energy equation for blood vessel buckling under internal pressure. A buckling equation was established to determine the critical pressure based on the potential energy. The critical pressures of blood vessels with small tapering along their axis were estimated using the energy approach. It was demonstrated that the energy approach yields both the same differential equation and critical pressure for cylindrical blood vessel buckling as obtained previously using the adjacent equilibrium approach. Tapering reduced the critical pressure of blood vessels compared to the cylindrical ones. This energy approach provides a useful tool for studying blood vessel buckling and will be useful in dealing with various imperfections of the vessel wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aoki, T., and D. N. Ku. Collapse of diseased arteries with eccentric cross section. J. Biomech. 26(2):133–142, 1993.

    Article  CAS  PubMed  Google Scholar 

  2. Bazant, Z. P., and L. Cedolin. Stability of Structures. Mineola, NY: Dove Publication, Inc, 1991.

    Google Scholar 

  3. Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108(2):189–192, 1986.

    Article  CAS  PubMed  Google Scholar 

  4. Cui, F., and Y. Zhang. Comment on “A biomechanical model of artery buckling” published on Journal of Biomechanics (volume 40, issue 16, pages 3672–3678). J. Biomech. 43(4):801–802, 2010 (author reply 802–803).

    Article  PubMed  Google Scholar 

  5. Datir, P., A. Y. Lee, S. D. Lamm, and H. C. Han. Effects of geometric variations on the buckling of arteries. Int. J. Appl. Mech. 2010.

  6. Del Corso, L., D. Moruzzo, B. Conte, M. Agelli, A. M. Romanelli, F. Pastine, M. Protti, F. Pentimone, and G. Baggiani. Tortuosity, kinking, and coiling of the carotid artery: expression of atherosclerosis or aging? Angiology 49(5):361–371, 1998.

    Article  CAS  PubMed  Google Scholar 

  7. Drzewiecki, G., S. Field, I. Moubarak, and J. K. Li. Vessel growth and collapsible pressure–area relationship. Am. J. Physiol. 273(4 Pt 2):H2030–H2043, 1997.

    CAS  PubMed  Google Scholar 

  8. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (2nd ed.). New York: Springer Verlag, 1993.

    Google Scholar 

  9. Fung, Y. C. Biomechanics: Circulation, Chap. 4, 2nd ed. New York: Springer, 1997.

    Google Scholar 

  10. Fung, Y. C., and S. Q. Liu. Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ. Res. 65(5):1340–1349, 1989.

    CAS  PubMed  Google Scholar 

  11. Gere, J. M. Mechanics of Materials, Chap. 11, 6th ed. Belmont, CA: Brooks/Cole, 2004.

  12. Han, H. C. A biomechanical model of artery buckling. J. Biomech. 40(16):3672–3678, 2007.

    Article  PubMed  Google Scholar 

  13. Han, H. C. Nonlinear buckling of blood vessels: a theoretical study. J. Biomech. 41(12):2708–2713, 2008.

    Article  PubMed  Google Scholar 

  14. Han, H. C. Blood vessel buckling within soft surrounding tissue generates tortuosity. J. Biomech. 42(16):2797–2801, 2009.

    Article  PubMed  Google Scholar 

  15. Han, H. C. The mechanical buckling of curved arteries. Mol. Cell Biomech. 6(2):93–100, 2009.

    PubMed  Google Scholar 

  16. Han, H. C. The theoretical foundation for artery buckling under internal pressure. J. Biomech. Eng. 131(12):124501, 2009.

    Article  PubMed  Google Scholar 

  17. Han, H. C., and Y. C. Fung. Species dependence of the zero-stress state of aorta: pig versus rat. J. Biomech. Eng. 113(4):446–451, 1991.

    Article  CAS  PubMed  Google Scholar 

  18. Han, H. C., and Y. C. Fung. Direct measurement of transverse residual strains in aorta. Am. J. Physiol. 270(2 Pt 2):H750–H759, 1996.

    CAS  PubMed  Google Scholar 

  19. Hiroki, M., K. Miyashita, and M. Oda. Tortuosity of the white matter medullary arterioles is related to the severity of hypertension. Cerebrovasc. Dis. 13(4):242–250, 2002.

    Article  PubMed  Google Scholar 

  20. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues and Organs. New York: Springer-Verlag, 2009.

    Google Scholar 

  21. Jackson, Z. S., D. Dajnowiec, A. I. Gotlieb, and B. L. Langille. Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler. Thromb. Vasc. Biol. 25(5):957–962, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. Kuang, Z. B. Fundamental of Nonlinear Continuum Mechanics. Xi’an: Xi’an Jiaotong University Press, 1989.

    Google Scholar 

  23. Lee, A., and H. C. Han. A thin-walled nonlinear model for vein buckling. Cardiovasc. Eng. Technol. 1(4):282–289, 2010.

    Article  Google Scholar 

  24. Martinez, R., C. A. Fierro, P. K. Shireman, and H. C. Han. Mechanical buckling of veins under internal pressure. Ann. Biomed. Eng. 38(4):1345–1353, 2010.

    Article  PubMed  Google Scholar 

  25. Nichols, W. W., and M. F. O’Rourke. McDonald’s Blood Flow in Arteries: Theoretical, Experimental, and Clinical Principles, Chap. 16, 4th ed. London: Arnold Publisher, 1998.

  26. Northcutt, A., P. Datir, and H. C. Han. Computational simulations of buckling of oval and tapered arteries. In: Tributes to Yuan-Cheng Fung on His 90th Birthday: From Cell to Human, edited by S. Chien. Singapore: World Scientific Publishing Co., 2009, pp. 53–64.

    Chapter  Google Scholar 

  27. Northcutt, A., A. Gaddy, Y. Feng, and H. C. Han. A numerical study of blood flow in sinusoidal-shaped arteries. Biomedical Engineering Society (BMES) Annual Fall Meeting, St Louis, MO, 2008.

  28. Pancera, P., M. Ribul, B. Presciuttini, and A. Lechi. Prevalence of carotid artery kinking in 590 consecutive subjects evaluated by Echocolordoppler. Is there a correlation with arterial hypertension? J. Intern. Med. 248(1):7–12, 2000.

    Article  CAS  PubMed  Google Scholar 

  29. Pedley, T. J., and X. Y. Luo. Modelling flow and oscillations in collapsible tubes. Theor. Comput. Fluid Dyn. 10:277–294, 1998.

    Article  CAS  Google Scholar 

  30. Qiao, A. K., X. L. Guo, S. G. Wu, Y. J. Zeng, and X. H. Xu. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries. Med. Eng. Phys. 26(7):545–552, 2004.

    Article  CAS  PubMed  Google Scholar 

  31. Rachev, A. A theoretical study of mechanical stability of arteries. J. Biomech. Eng. 131(5):051006, 2009.

    Article  PubMed  Google Scholar 

  32. Rachev, A., and R. Gleason. Dynamic instability of arteries. Effects of perivascular tissue. ASME Summer Bioengineering Conference, Lake Ta Hoe, CA, 2009.

  33. Smedby, O., and L. Bergstrand. Tortuosity and atherosclerosis in the femoral artery: what is cause and what is effect? Ann. Biomed. Eng. 24(4):474–480, 1996.

    Article  CAS  PubMed  Google Scholar 

  34. Timoshenko, S. P., and J. M. Gere. Theory of Elastic Stability (2nd ed.). New York: McGraw-Hill, 1963.

    Google Scholar 

  35. Wagenseil, J. E., N. L. Nerurkar, R. H. Knutsen, R. J. Okamoto, D. Y. Li, and R. P. Mecham. Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries. Am. J. Physiol. Heart Circ. Physiol. 289(3):H1209–H1217, 2005.

    Article  CAS  PubMed  Google Scholar 

  36. Wood, N. B., S. Z. Zhao, A. Zambanini, M. Jackson, W. Gedroyc, S. A. Thom, A. D. Hughes, and X. Y. Xu. Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. J. Appl. Physiol. 101(5):1412–1418, 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CAREER award 0644646 from the National Science Foundation, grant R01HL095852 from the National Institute of Health, and Grant 10928206 from NSF of China. The author thanks Professor Zhenbang Kuang and Dr. Fangsen Cui for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Chao Han.

Additional information

Associate Editor Cheng Dong oversaw the review of this article.

Appendix

Appendix

For cylindrical arteries with an orthotropic nonlinear elastic wall described by the Fung-type strain energy function given in Eq. (34a), integrating the equation of equilibrium and applying the boundary conditions yield the lumen pressure as:

$$ p = \int\limits_{{r_{\text{i}} }}^{{r_{\text{e}} }} {\left[ {\left( {1 + 2E_{\theta } } \right)\left( {b_{1} E_{\theta } + b_{4} E_{z} + b_{6} E_{\text{r}} } \right) - \left( {1 + 2E_{\text{r}} } \right)\left( {b_{6} E_{\theta } + b_{5} E_{z} + b_{3} E_{\text{r}} } \right)} \right]b_{0} e^{Q} {\frac{d\xi }{\xi }}} $$
(A1)

and the axial tension N as

$$ N = \pi r_{\text{i}}^{2} p + \pi \int\limits_{{r_{\text{i}} }}^{{r_{\text{e}} }} {\left[ {2\left( {1 + 2E_{z} } \right)\left( {b_{4} E_{\theta } + b_{2} E_{z} + b_{5} E_{\text{r}} } \right) - \left( {1 + 2E_{\text{r}} } \right)\left( {b_{6} E_{\theta } + b_{5} E_{z} + b_{3} E_{\text{r}} } \right) - \left( {1 + 2E_{\theta } } \right)\left( {b_{1} E_{\theta } + b_{4} E_{z} + b_{6} E_{\text{r}} } \right)} \right]b_{0} e^{Q} rdr} $$
(A2)

When arteries buckle (bend), the flexural rigidity EI is given by13,14

$$ EI = H = \pi \int\limits_{{r_{\text{i}} }}^{{r_{\text{e}} }} {\left[ {J_{z} - \frac{1}{3}J_{\theta } } \right]b_{0} e^{Q} r^{3} dr + {\frac{{\pi \, r_{\text{i}}^{3} }}{3}}\int\limits_{{r_{\text{i}} }}^{{r_{\text{e}} }} {\left[ {J_{\theta } } \right]b_{0} e^{Q} dr} } $$
(A3)

wherein

$$ \begin{gathered} J_{z} = 2g_{z} \left[ {\left( {1 + 2E_{z} } \right)g_{z} - \left( {1 + 2E_{\text{r}} } \right)g_{r} } \right] + 2g_{z} + \left( {1 + 2E_{z} } \right)b_{2} - \left( {1 + 2E_{\text{r}} } \right)b_{5} \hfill \\ J_{\theta } = 2g_{z} \left[ {\left( {1 + 2E_{\theta } } \right)g_{\theta } - \left( {1 + 2E_{\text{r}} } \right)g_{\text{r}} } \right] + \left( {1 + 2E_{\theta } } \right)b_{4} - \left( {1 + 2E_{\text{r}} } \right)b_{5} \hfill \\ \end{gathered} $$

with

$$ \begin{array}{*{20}c} {g_{\theta } = b_{1} E_{\theta } + b_{4} E_{z} + b_{6} E_{\text{r}} } \\ {g_{z} = b_{4} E_{\theta } + b_{2} E_{z} + b_{5} E_{\text{r}} } \\ {g_{\text{r}} = b_{6} E_{\theta } + b_{5} E_{z} + b_{3} E_{\text{r}} } \\ \end{array} . $$
(A4)

Note that there was an error in one of the previous publications13 and the error has been corrected in the current equations (A3) and (A4).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, HC. Determination of the Critical Buckling Pressure of Blood Vessels Using the Energy Approach. Ann Biomed Eng 39, 1032–1040 (2011). https://doi.org/10.1007/s10439-010-0212-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0212-2

Keywords

Navigation