Skip to main content
Log in

A Nonlinear Thin-Wall Model for Vein Buckling

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Tortuous or twisted veins are often seen in the retina, cerebrum, and legs (varicose veins) of one-third of the aged population, but the underlying mechanisms are poorly understood. While the collapse of veins under external pressure has been well documented, the bent buckling of long vein segments has not been studied. The objectives of this study were to develop a biomechanical model of vein buckling under internal pressure and to predict the critical pressure. Veins were modeled as thin-walled nonlinear elastic tubes with the Fung exponential strain energy function. Our results demonstrated that veins buckle due to high blood pressure or low axial tension. High axial tension stabilized veins under internal pressure. Our buckling model estimated the critical pressure accurately compared to the experimental measurements. The buckling equation provides a useful tool for studying the development of tortuous veins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Amemiya, T., and I. A. Bhutto. Retinal vascular changes and systemic diseases: corrosion cast demonstration. Ital. J. Anat. Embryol. 106(2 Suppl 1):237–244, 2001.

    Google Scholar 

  2. Baumann, U. A., C. Marquis, C. Stoupis, T. A. Willenberg, J. Takala, and S. M. Jakob. Estimation of central venous pressure by ultrasound. Resuscitation 64(2):193–199, 2005.

    Article  Google Scholar 

  3. Bergan, J. J., L. Pascarella, and G. W. Schmid-Schonbein. Pathogenesis of primary chronic venous disease: insights from animal models of venous hypertension. J. Vasc. Surg. 47(1):183–192, 2008.

    Article  Google Scholar 

  4. Campbell, B. Varicose veins and their management. BMJ 333(7562):287–292, 2006.

    Article  Google Scholar 

  5. Cheung, A. T., R. V. Perez, and P. C. Chen. Improvements in diabetic microangiopathy after successful simultaneous pancreas–kidney transplantation: a computer-assisted intravital microscopy study on the conjunctival microcirculation. Transplantation 68(7):927–932, 1999.

    Article  Google Scholar 

  6. Cheung, A. T., A. R. Price, P. L. Duong, S. Ramanujam, J. Gut, E. C. Larkin, P. C. Chen, and D. M. Wilson. Microvascular abnormalities in pediatric diabetic patients. Microvasc. Res. 63(3):252–258, 2002.

    Article  Google Scholar 

  7. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (2nd ed.). New York: Springer-Verlag, 1993.

    Google Scholar 

  8. Goldman, J., L. Zhong, and S. Q. Liu. Negative regulation of vascular smooth muscle cell migration by blood shear stress. Am. J. Physiol. Heart Circ. Physiol. 292(2):H928–H938, 2007.

    Article  Google Scholar 

  9. Han, H. C. A biomechanical model of artery buckling. J. Biomech. 40(16):3672–3678, 2007.

    Article  Google Scholar 

  10. Han, H. C. Nonlinear buckling of blood vessels: a theoretical study. J. Biomech. 41(12):2708–2713, 2008.

    Article  Google Scholar 

  11. Han, H. C. Blood vessel buckling within soft surrounding tissue generates tortuosity. J. Biomech. 42(16):2797–2801, 2009.

    Article  Google Scholar 

  12. Han, H. C. The theoretical foundation for artery buckling under internal pressure. J. Biomech. Eng. Trans. ASME 131(12):124501, 2009.

    Article  Google Scholar 

  13. Han, H. C., L. Zhao, M. Huang, L. S. Hou, Y. T. Huang, and Z. B. Kuang. Postsurgical changes of the opening angle of canine autogenous vein graft. J. Biomech. Eng. 120(2):211–216, 1998.

    Article  Google Scholar 

  14. Hou, L., Y. Huang, and H. Han. Bridging artery defect with autogenous vein under required anastomosing tension—a theoretical analysis based on related biomechanical evidence. J. Biomed. Eng. 17(3):277–280, 2000.

    Google Scholar 

  15. Ik Kim, D., B. Boong Lee, and J. J. Bergan. Venous hemodynamic changes after external banding valvuloplasty with varicosectomy in the treatment of primary varicose veins. J. Cardiovasc. Surg. 40(4):567–570, 1999.

    Google Scholar 

  16. Jones, R. H., and P. J. Carek. Management of varicose veins. Am. Fam. Physician 78(11):1289–1294, 2008.

    Google Scholar 

  17. Kockx, M. M., M. W. Knaapen, H. E. Bortier, K. M. Cromheeke, O. Boutherin-Falson, and M. Finet. Vascular remodeling in varicose veins. Angiology 49(11):871–877, 1998.

    Article  Google Scholar 

  18. Komsuoglu, B., O. Goldeli, K. Kulan, B. Cetinarslan, and S. S. Komsuoglu. Prevalence and risk factors of varicose veins in an elderly population. Gerontology 40(1):25–31, 1994.

    Article  Google Scholar 

  19. Liu, S. Q., and J. Goldman. Role of blood shear stress in the regulation of vascular smooth muscle cell migration. IEEE Trans. Biomed. Eng. 48(4):474–483, 2001.

    Article  Google Scholar 

  20. Liu, Q., D. Mirc, and B. M. Fu. Mechanical mechanisms of thrombosis in intact bent microvessels of rat mesentery. J. Biomech. 41(12):2726–2734, 2008.

    Article  Google Scholar 

  21. Martinez, R., C. A. Fierro, and H. C. Han. Critical buckling pressure of veins. In: ASME 2008 Summer Bioengineering Conference, Marco Island, Florida, 2008.

  22. Martinez, R., C. A. Fierro, P. K. Shireman, and H. C. Han. Mechanical buckling of veins under internal pressure. Ann. Biomed. Eng. 38(4):1345–1353, 2010.

    Article  Google Scholar 

  23. Mavromatis, K., T. Fukai, M. Tate, N. Chesler, D. N. Ku, and Z. S. Galis. Early effects of arterial hemodynamic conditions on human saphenous veins perfused ex vivo. Arterioscler. Thromb. Vasc. Biol. 20(8):1889–1895, 2000.

    Google Scholar 

  24. Moody, D. M., W. R. Brown, V. R. Challa, H. S. Ghazi-Birry, and D. M. Reboussin. Cerebral microvascular alterations in aging, leukoaraiosis, and Alzheimer’s disease. Ann. N. Y. Acad. Sci. 826:103–116, 1997.

    Article  Google Scholar 

  25. Moore, M. M., J. Goldman, A. R. Patel, S. Chien, and S. Q. Liu. Role of tensile stress and strain in the induction of cell death in experimental vein grafts. J. Biomech. 34(3):289–297, 2001.

    Article  Google Scholar 

  26. Owen, C. G., R. S. Newsom, A. R. Rudnicka, S. A. Barman, E. G. Woodward, and T. J. Ellis. Diabetes and the tortuosity of vessels of the bulbar conjunctiva. Ophthalmology 115:e27–e32, 2008.

    Article  Google Scholar 

  27. Raffetto, J. D., and R. A. Khalil. Matrix metalloproteinases in venous tissue remodeling and varicose vein formation. Curr. Vasc. Pharmacol. 6(3):158–172, 2008.

    Article  Google Scholar 

  28. Wakefield, T. W., D. D. Myers, and P. K. Henke. Mechanisms of venous thrombosis and resolution. Arterioscler. Thromb. Vasc. Biol. 28(3):387–391, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a CAREER award (0644646) from the National Science Foundation, a research grant (R01HL095852) and an MBRS-RISE fellowship (GM60655) from the National Institute of Health, and Grant 10928206 from NSF of China. The authors thank Dr. Jay Humphrey of Texas A&M University for his helpful input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Chao Han.

Additional information

Associate Editor Yi-Ren Woo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, A.Y., Han, HC. A Nonlinear Thin-Wall Model for Vein Buckling. Cardiovasc Eng Tech 1, 282–289 (2010). https://doi.org/10.1007/s13239-010-0024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-010-0024-4

Keywords

Navigation