Skip to main content

Advertisement

Log in

Mechanical Buckling of Veins Under Internal Pressure

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Venous tortuosity is associated with multiple disease states and is often thought to be a consequence of venous hypertension and chronic venous disease. However, the underlying mechanisms of vein tortuosity are unclear. We hypothesized that increased pressure causes vein buckling that leads to a tortuous appearance. The specific aim of this study was to determine the critical buckling pressure of veins. We determined the buckling pressure of porcine jugular veins and measured the mechanical properties of these veins. Our results showed that the veins buckle when the transmural pressure exceeds a critical pressure that is strongly related to the axial stretch ratio in the veins. The critical pressures of the eight veins tested were 14.2 ± 5.4 and 26.4 ± 9.0 mmHg at axial stretch ratio 1.5 and 1.7, respectively. In conclusion, veins buckle into a tortuous shape at high lumen pressures or reduced axial stretch ratios. Our results are useful in understanding the development of venous tortuosity associated with varicose veins, venous valvular insufficiency, diabetic retinopathy, and vein grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Balaz, P., S. Rokosny, D. Klein, and M. Adamec. Aneurysmorrhaphy is an easy technique for arteriovenous fistula salvage. J. Vasc. Access 9(2):81–84, 2008.

    CAS  PubMed  Google Scholar 

  2. Baumann, U. A., C. Marquis, C. Stoupis, T. A. Willenberg, J. Takala, and S. M. Jakob. Estimation of central venous pressure by ultrasound. Resuscitation 64(2):193–199, 2005.

    Article  PubMed  Google Scholar 

  3. Bergan, J. J., L. Pascarella, and G. W. Schmid-Schonbein. Pathogenesis of primary chronic venous disease: insights from animal models of venous hypertension. J. Vasc. Surg. 47(1):183–192, 2008.

    Article  PubMed  Google Scholar 

  4. Beris, A. E., P. N. Soucacos, and A. S. Touliatos. Experimental evaluation of the length of microvenous grafts under normal tension. Microsurgery 13(4):195–199, 1992.

    Article  CAS  PubMed  Google Scholar 

  5. Blankenship, J. C., J. A. Narke, and J. W. Roberts. Transluminal extraction catheter atherectomy in long saphenous vein grafts. Cathet. Cardiovasc. Diagn. 35(4):368–372, 1995.

    Article  CAS  PubMed  Google Scholar 

  6. Brown, W. R., D. M. Moody, V. R. Challa, C. R. Thore, and J. A. Anstrom. Venous collagenosis and arteriolar tortuosity in leukoaraiosis. J. Neurol. Sci. 203–204:159–163, 2002.

    Article  PubMed  Google Scholar 

  7. Canonico, S., C. Gallo, G. Paolisso, F. Pacifico, G. Signoriello, G. Sciaudone, N. Ferrara, V. Piegari, M. Varricchio, and F. Rengo. Prevalence of varicose veins in an Italian elderly population. Angiology 49(2):129–135, 1998.

    Article  CAS  PubMed  Google Scholar 

  8. Cheung, A. T., R. V. Perez, and P. C. Chen. Improvements in diabetic microangiopathy after successful simultaneous pancreas-kidney transplantation: a computer-assisted intravital microscopy study on the conjunctival microcirculation. Transplantation 68(7):927–932, 1999.

    Article  CAS  PubMed  Google Scholar 

  9. Cheung, A. T., A. R. Price, P. L. Duong, S. Ramanujam, J. Gut, E. C. Larkin, P. C. Chen, and D. M. Wilson. Microvascular abnormalities in pediatric diabetic patients. Microvasc. Res. 63(3):252–258, 2002.

    Article  PubMed  Google Scholar 

  10. Daniels, S. R., M. J. Lipman, M. J. Burke, and J. M. Loggie. The prevalence of retinal vascular abnormalities in children and adolescents with essential hypertension. Am. J. Ophthalmol. 111(2):205–208, 1991.

    CAS  PubMed  Google Scholar 

  11. Dean, L. S., C. J. George, G. S. Roubin, E. D. Kennard, D. R. Holmes, Jr., S. B. King, 3rd, R. E. Vlietstra, J. W. Moses, D. Kereiakes, J. P. Carrozza, Jr., S. G. Ellis, J. R. Margolis, and K. M. Detre. Bailout and corrective use of Gianturco-Roubin flex stents after percutaneous transluminal coronary angioplasty: operator reports and angiographic core laboratory verification from the National Heart, Lung, and Blood Institute/New Approaches to Coronary Intervention Registry. J. Am. Coll. Cardiol. 29(5):934–940, 1997.

    Article  CAS  PubMed  Google Scholar 

  12. Ellis, S. G. Coronary lesions at increased risk. Am. Heart J. 130(3 Pt 2):643–646, 1995.

    Article  CAS  PubMed  Google Scholar 

  13. Field, M., K. MacNamara, G. Bailey, A. Jaipersad, R. H. Morgan, and A. D. Pherwani. Primary patency rates of AV fistulas and the effect of patient variables. J. Vasc. Access 9(1):45–50, 2008.

    CAS  PubMed  Google Scholar 

  14. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (2nd ed.). New YorK: Springer Verlag, 1993.

    Google Scholar 

  15. Fung, Y. C. Biomechanics: Circulation, Chapter 4 (2nd ed.). New York: Springer, 1997.

    Google Scholar 

  16. Han, H. C. A biomechanical model of artery buckling. J. Biomech. 40(16):3672–3678, 2007.

    Article  PubMed  Google Scholar 

  17. Han, H. C. Nonlinear buckling of blood vessels: a theoretical study. J. Biomech. 41(12):2708–2713, 2008.

    Article  PubMed  Google Scholar 

  18. Han, H. C. Blood vessel buckling within soft surrounding tissue generates tortuosity. J. Biomech. 42(16):2797–2801, 2009.

    Article  PubMed  Google Scholar 

  19. Han, H. C., D. N. Ku, and R. P. Vito. Arterial wall adaptation under elevated longitudinal stretch in organ culture. Ann. Biomed. Eng. 31(4):403–411, 2003.

    Article  PubMed  Google Scholar 

  20. Han, H. C., L. Zhao, M. Huang, L. S. Hou, Y. T. Huang, and Z. B. Kuang. Postsurgical changes of the opening angle of canine autogenous vein graft. J. Biomech. Eng. 120(2):211–216, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Hughes, A. D., E. Martinez-Perez, A. S. Jabbar, A. Hassan, N. W. Witt, P. D. Mistry, N. Chapman, A. V. Stanton, G. Beevers, R. Pedrinelli, K. H. Parker, and S. A. Thom. Quantification of topological changes in retinal vascular architecture in essential and malignant hypertension. J. Hypertens. 24(5):889–894, 2006.

    Article  CAS  PubMed  Google Scholar 

  22. Hutchins, G. M., M. M. Miner, and B. H. Bulkley. Tortuosity as an index of the age and diameter increase of coronary collateral vessels in patients after acute myocardial infarction. Am. J. Cardiol. 41(2):210–215, 1978.

    Article  CAS  PubMed  Google Scholar 

  23. Jaggy, C., M. Lachat, D. Inderbitzin, B. Leskosek, D. Candinas, T. Burkhard, and M. Turina. Optimized veno-venous bypass with the affinity pump. ASAIO J. 47(1):56–59, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Jogiya, A., and C. Sandy. Mild optic nerve hypoplasia with retinal venous tortuosity in aarskog (facial-digital-genital) syndrome. Ophthalmic Genet. 26(3):139–141, 2005.

    Article  PubMed  Google Scholar 

  25. Kockx, M. M., M. W. Knaapen, H. E. Bortier, K. M. Cromheeke, O. Boutherin-Falson, and M. Finet. Vascular remodeling in varicose veins. Angiology 49(11):871–877, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Komsuoglu, B., O. Goldeli, K. Kulan, B. Cetinarslan, and S. S. Komsuoglu. Prevalence and risk factors of varicose veins in an elderly population. Gerontology 40(1):25–31, 1994.

    Article  CAS  PubMed  Google Scholar 

  27. Kylstra, J. A., T. Wierzbicki, M. L. Wolbarsht, M. B. Landers, 3rd, and E. Stefansson. The relationship between retinal vessel tortuosity, diameter, and transmural pressure. Graefes Arch. Clin. Exp. Ophthalmol. 224(5):477–480, 1986.

    Article  CAS  PubMed  Google Scholar 

  28. Lai, C. M., S. A. Dunlop, L. A. May, M. Gorbatov, M. Brankov, W. Y. Shen, N. Binz, Y. K. Lai, C. E. Graham, C. J. Barry, I. J. Constable, L. D. Beazley, and E. P. Rakoczy. Generation of transgenic mice with mild and severe retinal neovascularisation. Br. J. Ophthalmol. 89(7):911–916, 2005.

    Article  PubMed  Google Scholar 

  29. Liu, Q., D. Mirc, and B. M. Fu. Mechanical mechanisms of thrombosis in intact bent microvessels of rat mesentery. J. Biomech. 41(12):2726–2734, 2008.

    Article  PubMed  Google Scholar 

  30. Moody, D. M., W. R. Brown, V. R. Challa, H. S. Ghazi-Birry, and D. M. Reboussin. Cerebral microvascular alterations in aging, leukoaraiosis, and Alzheimer’s disease. Ann. N. Y. Acad. Sci. 826:103–116, 1997.

    Article  CAS  PubMed  Google Scholar 

  31. Oster, S. F., D. S. McLeod, T. Otsuji, M. F. Goldberg, and G. A. Lutty. Preliminary ocular histopathological observations on heterozygous NEMO-deficient mice. Exp. Eye Res. 88(3):613–616, 2009.

    Article  CAS  PubMed  Google Scholar 

  32. Owen, C. G., R. S. Newsom, A. R. Rudnicka, S. A. Barman, E. G. Woodward, and T. J. Ellis. Diabetes and the tortuosity of vessels of the bulbar conjunctiva. Ophthalmology 115(6):e27–e32, 2008.

    Article  PubMed  Google Scholar 

  33. Owens, C. D., F. J. Rybicki, N. Wake, A. Schanzer, D. Mitsouras, M. D. Gerhard-Herman, and M. S. Conte. Early remodeling of lower extremity vein grafts: inflammation influences biomechanical adaptation. J. Vasc. Surg. 47(6):1235–1242, 2008.

    Article  PubMed  Google Scholar 

  34. Pascarella, L., and G. W. Schmid Schonbein. Causes of telengiectasias, reticular veins, and varicose veins. Semin. Vasc. Surg. 18(1):2–4, 2005.

    Article  PubMed  Google Scholar 

  35. Pedley, T. J., and X. Y. Luo. Modelling flow and oscillations in collapsible tubes. Theoret. Comp. Fluid Dynamics 10:277–294, 1998.

    Article  CAS  Google Scholar 

  36. Raffetto, J. D., and R. A. Khalil. Matrix metalloproteinases in venous tissue remodeling and varicose vein formation. Curr. Vasc. Pharmacol. 6(3):158–172, 2008.

    Article  CAS  PubMed  Google Scholar 

  37. Raffetto, J. D., and R. A. Khalil. Mechanisms of varicose vein formation: valve dysfunction and wall dilation. Phlebology 23(2):85–98, 2008.

    Article  CAS  PubMed  Google Scholar 

  38. Saaristo, A., T. Veikkola, B. Enholm, M. Hytonen, J. Arola, K. Pajusola, P. Turunen, M. Jeltsch, M. J. Karkkainen, D. Kerjaschki, H. Bueler, S. Yla-Herttuala, and K. Alitalo. Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. FASEB J. 16(9):1041–1049, 2002.

    Article  CAS  PubMed  Google Scholar 

  39. Schneider, P. R., J. Pribaz, and R. C. Russell. Microvenous graft length determination for arterial repair. Ann. Plast. Surg. 17(4):292–298, 1986.

    Article  CAS  PubMed  Google Scholar 

  40. Takase, S., L. Pascarella, J. J. Bergan, and G. W. Schmid-Schonbein. Hypertension-induced venous valve remodeling. J. Vasc. Surg. 39(6):1329–1334, 2004.

    Article  PubMed  Google Scholar 

  41. Tanaka, T. T., and Y. C. Fung. Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. J. Biomech. 7(4):357–370, 1974.

    Article  CAS  PubMed  Google Scholar 

  42. Timoshenko, S. P., and J. M. Gere. Theory of Elastic Stability (2nd ed.). New York: McGraw-Hill, 1963.

    Google Scholar 

  43. Wakefield, T. W., D. D. Myers, and P. K. Henke. Mechanisms of venous thrombosis and resolution. Arterioscler. Thromb. Vasc. Biol. 28(3):387–391, 2008.

    Article  CAS  PubMed  Google Scholar 

  44. Wong, A. P., N. Nili, Z. S. Jackson, B. Qiang, H. Leong-Poi, R. Jaffe, E. Raanani, P. W. Connelly, J. D. Sparkes, and B. H. Strauss. Expansive remodeling in venous bypass grafts: novel implications for vein graft disease. Atherosclerosis 196(2):580–589, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a CAREER award # 0646646 and a REU supplement from the National Science Foundation. It was also partially supported by research grants from NSF (0602834), the Veterans Administration, and the National Institute of Health (HL074236 & HL095852). We thank Dr. Yong-Ung Lee and Miss Danika Hayman for their help in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Chao Han.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, R., Fierro, C.A., Shireman, P.K. et al. Mechanical Buckling of Veins Under Internal Pressure. Ann Biomed Eng 38, 1345–1353 (2010). https://doi.org/10.1007/s10439-010-9929-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9929-1

Keywords

Navigation