Skip to main content

Magnetic Resonance Imaging Basics

  • Chapter
  • First Online:
Electrical Properties of Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1380))

Abstract

In this chapter, we will discuss the basic principles of signal generation and image formation in magnetic resonance imaging (MRI). We will start with a description of nuclear magnetic resonance (NMR) phenomenon and then gradually arrive at the mathematical expressions for MRI signal in spatial domain and k-space domain. Then we describe the image reconstruction methods typically used in MRI, the signal-to-noise ratio calculation methods in MRI, and common MR image formats. A key focus of the contents of this chapter is on the formation of phase images in MRI. We do not intend to provide a comprehensive overview of MRI. Instead, the contents are intended for readers interested in performing research in electromagnetic properties mapping using MRI. Nevertheless, considering the generality of the contents, any reader interested in developing a quick understanding of the physical and mathematical background of MRI can find this chapter helpful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Cusack, B. Russell, S.M. Cox, C. De Panfilis, C. Schwarzbauer, R. Ansorge, An evaluation of the use of passive shimming to improve frontal sensitivity in fMRI. Neuroimage 24, 82–91 (2005)

    Article  PubMed  Google Scholar 

  2. A. Deshmane, V. Gulani, M.A. Griswold, N. Seiberlich, Parallel MR imaging. J. Magn. Reson. Imag. 36(1), 55–72 (2012)

    Article  Google Scholar 

  3. W.T. Dixon, Simple proton spectroscopic imaging. Radiology 153(1), 189–194 (1984)

    Article  CAS  PubMed  Google Scholar 

  4. R.R. Edelman, The history of MR imaging as seen through the pages of radiology. Radiology 273(2S), S181–S200 (2014)

    Article  PubMed  Google Scholar 

  5. M.A. Griswold, P.M. Jakob, M. Nittka, J.W. Goldfarb, A. Haase, Partially parallel imaging with localized sensitivities (PILS). Magn. Reson. Med. 44(4), 602–609 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. M.A. Griswold, P.M. Jakob, R.M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, A. Haase, Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  PubMed  Google Scholar 

  7. B. Gruber, M. Froeling, T. Leiner, D.W.J. Klomp, RF coils: A practical guide for nonphysicists. J. Magn. Reson. Imag. 48(3), 590–604 (2018)

    Article  Google Scholar 

  8. E.M. Haacke, S. Mittal, Z. Wu, J. Neelavalli, Y.-C.N. Cheng, Susceptibility-weighted imaging: Technical aspects and clinical applications, part 1. Am. J. Neuroradiol. 30(1), 19–30 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. J. Hamilton, D. Franson, N. Seiberlich, Recent advances in parallel imaging for MRI. Progr. Nuclear Magn. Reson. Spectr. 101, 71–95 (2017)

    Article  CAS  Google Scholar 

  10. C. Juchem, R.A. de Graaf, B0 magnetic field homogeneity and shimming for in vivo magnetic resonance spectroscopy. Analy. Biochem. 529, 17–29 (2017)

    Article  CAS  Google Scholar 

  11. C. Juchem, B. Muller-Bierl, F. Schick, N.K. Logothetis, J. Pfeuffer, Combined passive and active shimming for in vivo mr spectroscopy at high magnetic fields. J. Magn. Reson. 183(2), 278–289 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. E.G. Larsson, D. Erdogmus, R. Yan, J.C. Principe, J.R. Fitzsimmons, SNR-optimality of sum-of-squares reconstruction for phased-array magnetic resonance imaging. J. Magn. Reson. 163(1), 121–123 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. Z.-P. Liang, P.C. Lauterber, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. (Wiley/IEEE Press, New York/Piscataway, 2000), pp. 1–416

    Google Scholar 

  14. C. Liu, W. Li, K.A. Tong, K.W. Yeom, S. Kuzminski, Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J. Magn. Reson. Imag. 42(1), 23–41 (2015)

    Article  Google Scholar 

  15. M. Lustig, J.M. Pauly, SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn. Reson. Med. 64(2), 457–471 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  16. A.S. Minhas, Y.-T. Kim, W.-C. Jeong, H.-J. Kim, S.-Y. Lee, E.-J. Woo, Chemical shift artifact correction in MREIT. J. Biomed. Eng. Res. 30(6), 461–468 (2009)

    Google Scholar 

  17. S. Mittal, Z. Wu, J. Neelavalli, E.M. Haacke, Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. Am. J. Neuroradiol. 30(2), 232–252 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. Phair, M. Brideson, L.K. Forbes, A cylindrical basis set for shim coil design in magnetic resonance imaging. Concepts Magn. Reson. Part B Magn. Reson. Eng. 48B(3), e21400 (2018)

    Google Scholar 

  19. K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. M. Sarracanie, N. Salameh, Low-field MRI: how low can we go? a fresh view on an old debate. Front. Phys. 8, 172 (2020)

    Article  Google Scholar 

  21. D.K. Sodickson, W.J. Manning, Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn. Reson. Med. 38(4), 591–603 (1997)

    Article  CAS  PubMed  Google Scholar 

  22. G.J. Stanisz, E.E. Odrobina, J. Pun, M. Escaravage, S.J. Graham, M.J. Bronskill, R.M. Henkelman, T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn. Reson. Med. 54(3), 507–512 (2005)

    Article  PubMed  Google Scholar 

  23. Y. Wang, T. Liu, Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn. Reson. Med. 73(1), 82–101 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Singh Minhas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minhas, A.S., Oliver, R. (2022). Magnetic Resonance Imaging Basics. In: Sadleir, R., Minhas, A.S. (eds) Electrical Properties of Tissues. Advances in Experimental Medicine and Biology, vol 1380. Springer, Cham. https://doi.org/10.1007/978-3-031-03873-0_3

Download citation

Publish with us

Policies and ethics