Skip to main content
Log in

Effects of the actuation waveform on the drop size reduction in drop-on-demand inkjet printing

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this study the effects of the actuation waveforms on the droplet generation in a drop-on-demand inkjet printing are studied systematically by numerical simulations. Two different types of waveforms, namely the unipolar and bipolar actuations, are investigated for three fluids with different physical properties. We focus on two key parameters, which are the dwell time and the velocity amplitude. For the unipolar driving, the ejection velocity and the ejected liquid volume are both increased as the velocity amplitude becomes larger. The dwell time only has minor effects on both the ejection velocity and the ejected liquid volume. The ejection velocity decreases significantly for large liquid viscosity, while the influences of viscosity on the ejected liquid volume are much weaker. Four different droplet morphologies and the corresponding parameter ranges are identified. The droplet radius can be successfully reduced to about 40% of the nozzle exit radius. For the bipolar waveforms, same droplet morphologies are observed but with shifted boundaries in the phase space. The minimal radius of stable droplet produced by the bipolar waveforms is even smaller compared to the unipolar ones.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wijshoff, H.: The dynamics of the piezo inkjet printhead operation. Phys. Rep. 491(4), 77–177 (2010)

    Article  Google Scholar 

  2. Castrejon-Pita, J.R., Baxter, W.R.S., Morgan, J., et al.: Future, opportunities and challenges of inkjet technologies. Atom. Sprays 23(6), 1490–1493 (2013)

    Google Scholar 

  3. Ngo, T.D., Kashani, A., Imbalzano, G., et al.: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143, 172–196 (2018)

    Article  Google Scholar 

  4. Shirazi, S.F., Gharehkhani, S., Mehrali, M., et al.: A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 16(3), 033502 (2015)

    Article  Google Scholar 

  5. Li, K., Liu, J.-K., Chen, W.-S., et al.: Contorllable printing droplets on demand by piezoelectric inkjet: applications and methods. Microsyst. Technol. 24(2), 879–889 (2018)

    Article  Google Scholar 

  6. Zhong, S.-Y., Qi, L.-H., Xiong, W., et al.: Research on mechanism of generating aluminum droplets smaller than the nozzle diameter by pneumatic drop-on-demand technology. Int. J. Adv. Manuf. Technol. 93(5), 1771–1780 (2017)

    Article  Google Scholar 

  7. Wei, H., Xiao, X., Yin, Z., et al.: A waveform design method for high DPI piezoelectric inkjet print-head based on numerical simulation. Microsyst. Technol. 23(12), 5365–5373 (2017)

    Article  Google Scholar 

  8. Castrejon-Pita, A.A., Castrejon-Pita, J.R., Martin, G.D.: A novel method to produce small droplets from large nozzles. Rev. Sci. Instrum. 83(11), 115105 (2012)

    Article  Google Scholar 

  9. Le, H.P.: Progress and trends in ink-jet printing technology. J. Imaging Sci. Technol. 42(1), 49–62 (1998)

    Google Scholar 

  10. Gan, H.Y., Xuechuan, S., Eriksson, T., et al.: Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation. J. Micromech. Microeng. 19(5), 055010 (2009)

    Article  Google Scholar 

  11. Kwon, K.S., Zhang, D., Go, H.S.: Jetting frequency and evaporation effects on the measurement accuracy of inkjet droplet amount. J. Imaging Sci. Technol. 59(2), 204011–2040110 (2015)

    Article  Google Scholar 

  12. Gordillo, J.M., Gekle, S.: Generation and breakup of Worthington jets after cavity collapse. Part 2. Tip breakup of stretched jets. J. Fluid Mech. 663, 331–346 (2010)

    Article  MATH  Google Scholar 

  13. Gekle, S., Gordillo, J.M.: Generation and breakup of Worthington jets after cavity collapse. Part 1. Jet formation. J. Fluid Mech. 663, 293–330 (2010)

    Article  MATH  Google Scholar 

  14. McKinley, G.H., Renardy, M.: Wolfgang von Ohnesorge. Phys. Fluids 23(12), 127101 (2011)

    Article  Google Scholar 

  15. Castrejon-Pita, J.R., Willis, S.J., Castrejon-Pita, A.A.: Dynamic nozzles for drop generators. Rev. Sci. Instrum. 86(11), 115101 (2015)

    Article  Google Scholar 

  16. Oktavianty, O., Kyotani, T., Haruyama, S., et al.: New actuation waveform design of DoD inkjet printer for single and multiple drop ejection method. Addit. Manuf. 25, 522–531 (2019)

    Google Scholar 

  17. Liu, Y., Derby, B.: Experimental study of the parameters for stable drop-on-demand inkjet performance. Phys. Fluids 31(3), 032004-1–032004-11 (2019)

    Google Scholar 

  18. Laurell, T., Wallman, L., Nilsson, J.: Design and development of a silicon microfabricated flow-through dispenser for on-line picolitre sample handling. J. Micromech. Microeng. 9(4), 369–376 (1991)

    Article  Google Scholar 

  19. Kye-Si, K.: Waveform design methods for piezo inkjet dispensers based on measured meniscus motion. J. Microelectromech. Syst. 18(5), 1118–1125 (2009)

    Article  Google Scholar 

  20. Kye-Si, K.: Experimental analysis of waveform effects on satellite and ligament behavior via in situ measurement of the drop-on-demand drop formation curve and the instantaneous jetting speed curve. J. Micromech. Microeng. 20(11), 115005 (2010)

    Article  Google Scholar 

  21. Miers, J.C., Zhou, W.: Droplet formation at megahertz frequency. AIChE. 63(6), 2367–2377 (2017)

    Article  Google Scholar 

  22. Zhong, Y., Fang, H., Ma, Q., et al.: Analysis of droplet stability after ejection from an inkjet nozzle. J. Fluid Mech. 845, 378–391 (2018)

    Article  Google Scholar 

  23. Wu, H.C., Lin, H.J.: Effects of actuating pressure waveforms on the droplet behavior in a piezoelectric inkjet. Mater. Trans. 51(12), 2269–2276 (2010)

    Article  Google Scholar 

  24. Poozesh, S., Saito, K., Akafuah, N.K., et al.: Comprehensive examination of a new mechanism to produce small droplets in drop-on-demand inkjet technology. Appl. Phys. A 122(2), 110–122 (2016)

    Article  Google Scholar 

  25. Sakai, S.: Dynamics of piezoelectric inkjet printing systems. NIP Digit. Fabric. Conf. 1, 15–20 (2000)

    Google Scholar 

  26. Chen, A.U., Basaran, O.A.: A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys. Fluids 14(1), L1–L4 (2002)

    Article  MATH  Google Scholar 

  27. Dijksman, J.F.: Hydrodynamics of small tubular pumps. J. Fluid Mech. 139, 173–191 (2006)

    Article  Google Scholar 

  28. Castrejon-Pita, J.R., Morrison, N.F., Harlen, O.G., et al.: Experiments and Lagrangian simulations on the formation of droplets in drop-on-demand mode. Phys. Rev. E 83(3), 1–12 (2011)

    Article  Google Scholar 

  29. Reis, N., Derby, B.: Ink jet deposition of ceramic suspensions: Modeling and experiments of droplet formation. Mater. Res. Soc. Proc. 625, 117–122 (2000)

    Article  Google Scholar 

  30. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  31. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Aqeel, A.B., Mohasan, M., Lv, P., et al.: Effects of nozzle and fluid properties on the drop formation dynamics in a drop-on-demand inkjet printing. Appl. Math. Mech. 40(9), 1239–1254 (2019)

    Article  MathSciNet  Google Scholar 

  33. Kim, E., Baek, J.: Numerical study on the effects of non-dimensional parameters on drop-on-demand droplet formation dynamics and printability range in the up-scaled model. Phys. Fluids 24(8), 082103-1–082103-12 (2012)

    Article  Google Scholar 

  34. Basaran, O.A.: Small-scale free surface flows with breakup: Drop formation and emerging applications. AIChE J. 48(9), 1842–1848 (2002)

    Article  Google Scholar 

  35. McKinley, G.: Visco-elasto-capillary thinning and breakup of complex fluid. Br. Soc. Rheol. 1–49, (2005)

  36. Bhat, P.P., Appathurai, S., Harris, M.T., et al.: Formation of beads-on-a-string structures during break-up of viscoelastic filaments. Nat. Phys. 6(8), 625–631 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grants 91848201, 11988102, 11521202, 11872004, 11802004). The authors also acknowledge the partial support from the Beijing Natural Science Foundation (Grants L172002). A.B. Aqeel would like to thank the Chinese Scholarship Council (CSC) for providing Chinese Government Scholarship (CGS). The numerical simulations were performed on the National Super Computing Center in Tianjin, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengyu Lv or Yantao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aqeel, A.B., Mohasan, M., Lv, P. et al. Effects of the actuation waveform on the drop size reduction in drop-on-demand inkjet printing. Acta Mech. Sin. 36, 983–989 (2020). https://doi.org/10.1007/s10409-020-00991-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00991-y

Keywords

Navigation