Skip to main content
Log in

Comprehensive examination of a new mechanism to produce small droplets in drop-on-demand inkjet technology

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For drop-on-demand inkjet technology, the capacity to reduce the inkjet droplet size without changing the size of the nozzle orifice would beneficially impact coating, processing, and maintenance attributes. To examine droplet sizes emanating from prescribed nozzle orifices, this manuscript applies numerical simulation based on computational fluid dynamics and an in-depth assessment of relevant parameters associated with producing liquid droplets, and then compares the outcomes with published data. For a given liquid, six distinct flow regimes were determined to affect droplet sizes, the critical characterization of which could be effectively assessed by using two non-dimensional parameters, including the Weber number, We, and a newly defined, non-dimensional temporal frequency number, Ω. The use of the regimes enables the specification of operational conditions to control and minimize droplet sizes to less than 20 % of the nozzle orifice diameter and up to 150 times smaller droplet volumes from nozzle orifices. As a consequence, a new method is proposed that would be useful for lowering droplet sizes while maintaining desired droplet quality for deposition on and coating of surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

D :

Print-head inlet diameter (m)

f :

Temporal jetting frequency (1/s)

\(\vec{F}_{\sigma }\) :

Surface tension force (kg/m2 s2)

\(\vec{g}\) :

Gravitational acceleration (ms2)

I :

Unit tensor

\(\dot{m}_{qp}\) :

Mass transfer from phase q to phase p (kg/s)

\(\dot{m}_{pq}\) :

Mass transfer from phase p to phase q (kg/s)

n :

Index for time step

\(\hat{n}\) :

Unit vector of \(\vec{n}\)

p :

Pressure (kg/(ms2)

R :

Nozzle radius (m)

t :

Time (s)

t r :

Relaxation time (s)

T :

Surface stress tensor (kg/s2)

U :

Scale ejection velocity (m/s)

u m :

Maximum axial velocity (m/s)

\(\vec{V}\) :

Velocity vector (m/s)

V :

Volume of the computational cell (m3)

\(\vec{V}^{\text{T}}\) :

Transpose of velocity vector (m/s)

\(\vec{x}\) :

Coordinate vector

σ :

Surface tension (kg/s2)

ρ :

Density (kg/m3)

α :

Volume fraction

μ :

Dynamic viscosity (m2/s)

ϑ :

Representative property

\(\otimes\) :

Tensor product of two vectors

References

  1. O.A. Basaran, Small-scale free surface flows with breakup: Drop formation and emerging applications. AICHE J. 48, 1842–1848 (2002)

    Article  Google Scholar 

  2. R.F. Burr, D.A. Tence, H.P. Le, R.L. Adams, J.C. Mutton, Method and apparatus for producing dot size modulated ink jet printing. U.S. Patent 5495270 (1996)

  3. H. Wijshoff, The dynamics of the piezo inkjet printhead operation. Phys. Rep. 491, 77–177 (2010)

    Article  ADS  Google Scholar 

  4. B. Jo, A. Lee, K. Ahn, S. Lee, Evaluation of jet performance in drop-on-demand (DOD) inkjet printing. Korean J. Chem. Eng. 26, 339–348 (2009)

    Article  Google Scholar 

  5. D. Im. Next generation digital microfluidic technology: Electrophoresis of charged droplets, Korean J. Chem. Eng. 32, 1–8 (2015)

    Article  Google Scholar 

  6. J. Park, B. Kim, S.-Y. Kim, J. Hwang, Prediction of drop-on-demand (DOD) pattern size in pulse voltage-applied electrohydrodynamic (EHD) jet printing of Ag colloid ink. Appl. Phys. A 117, 2225–2234 (2014)

    Article  ADS  Google Scholar 

  7. H. Gan, X. Shan, T. Eriksson, B. Lok, Y. Lam, Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation. J. Micromech. Microeng. 19, 055010 (2009)

    Article  ADS  Google Scholar 

  8. A. James, B. Vukasinovic, M.K. Smith, A. Glezer, Vibration-induced drop atomization and bursting. J. Fluid Mech. 476, 1–28 (2003)

    ADS  MATH  Google Scholar 

  9. C. Xu, Y. Huang, J. Fu, R.R. Markwald, Electric field-assisted droplet formation using piezoactuation-based drop-on-demand inkjet printing. J. Micromech. Microeng. 24, 115011 (2014)

    Article  ADS  Google Scholar 

  10. J.R. Castrejón-Pita, N.F. Morrison, O.G. Harlen, G.D. Martin, I.M. Hutchings, Experiments and Lagrangian simulations on the formation of droplets in drop-on-demand mode. Phys. Rev. E 83(3), 036306 (2011)

    Article  ADS  Google Scholar 

  11. E. Amara, K. Kheloufi, T. Tamsaout, R. Fabbro, K. Hirano, Numerical investigations on high-power laser cutting of metals. Appl. Phys. A 119, 1245–1260 (2015)

    Article  ADS  Google Scholar 

  12. S. Poozesh, N. Akafuah, K. Saito, New criteria for filament breakup in droplet-on-demand inkjet printing using volume of fluid (VOF) method. Korean J. Chem. Eng. (2015)

  13. A.U. Chen, O.A. Basaran, A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys. Fluids 14, L1–L4 (2002)

    Article  ADS  MATH  Google Scholar 

  14. P.C. Duineveld, M.M. de Kok, M. Buechel, A. Sempel, K.A. Mutsaers, P. van de Weijer, I.G. Camps, T. van de Biggelaar, J.-E.J. Rubingh, E.I. Haskal, Ink-jet printing of polymer light-emitting devices. in International Symposium on Optical Science and Technology: International Society for Optics and Photonics, p. 59–67 (2002)

  15. Q. Xu, O.A. Basaran, Computational analysis of drop-on-demand drop formation. Phys. Fluids (1994-present) 19, 102111 (2007)

    Article  ADS  MATH  Google Scholar 

  16. S.B.Q. Tran, D. Byun, V.D. Nguyen, T.S. Kang, Liquid meniscus oscillation and drop ejection by ac voltage, pulsed dc voltage, and superimposing dc to ac voltages. Phys. Rev. E 80, 026318 (2009)

    Article  ADS  Google Scholar 

  17. J. Castrejón-Pita, G. Martin, S. Hoath, I. Hutchings, A simple large-scale droplet generator for studies of inkjet printing. Rev. Sci. Instrum. 79, 075108 (2008)

    Article  ADS  Google Scholar 

  18. J. Kimura, Y. Kawana, T. Kuriyama, An immobilized enzyme membrane fabrication method using an ink jet nozzle. Biosensors 4, 41–52 (1989)

    Article  Google Scholar 

  19. W.J. Lloyd, H.H. Taub, Ink Jet Printing. Output Hardcopy Devices (Academic Press Professional, Inc., San Diego, 1988), pp. 311–370

    Google Scholar 

  20. G.L. Bernardini, B.A. Rampy, G.A. Howell, D.J. Hayes, C.J. Frederickson, Applications of piezoelectric fluid jetting devices to neuroscience research. J. Neurosci. Methods 38, 81–88 (1991)

    Article  Google Scholar 

  21. T.M. Brennan. Method and apparatus for conducting an array of chemical reactions on a support surface. Google Pat. (1999)

  22. D. Sziele, O. Brüggemann, M. Döring, R. Freitag, K. Schügerl, Adaptation of a microdrop injector to sampling in capillary electrophoresis. J. Chromatogr. A 669(1), 254–258 (1994)

    Article  Google Scholar 

  23. G. Perçin, A. Atalar, F.L. Degertekin, B.T. Khuri-Yakub, Micromachined two-dimensional array piezoelectrically actuated transducers. Appl. Phys. Lett. 72, 1397–1399 (1998)

    Article  ADS  Google Scholar 

  24. T. Laurell, L. Wallman, J. Nilsson, Design and development of a silicon microfabricated flow-through dispenser for on-line picolitre sample handling. J. Micromech. Microeng. 9, 369 (1999)

    Article  ADS  Google Scholar 

  25. S. Sakai, Dynamics of piezoelectric inkjet printing systems. in NIP & Digital Fabrication Conference, vol. 2000: Society for Imaging Science and Technology, p. 15–20 (2000)

  26. A.A. Castrejón-Pita, J.R. Castrejón-Pita, G.D. Martin, A novel method to produce small droplets from large nozzles. Rev. Sci. Instrum. 83, 115105 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Acknowledgment to the institute of research for technology development (IR4TD) for its support. And more importantly a review of the contents of these manuscripts by Dr. John M. Stencel is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Poozesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poozesh, S., Saito, K., Akafuah, N.K. et al. Comprehensive examination of a new mechanism to produce small droplets in drop-on-demand inkjet technology. Appl. Phys. A 122, 110 (2016). https://doi.org/10.1007/s00339-016-9630-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9630-9

Keywords

Navigation