Skip to main content
Log in

Insights on the performance and dynamical characteristics of piezoelectric energy harvesters with dissipative viscoelastic impacts

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The effectiveness and dynamical characteristics of a cantilevered-piezoelectric energy harvester with a tip mass is investigated. The harvester is connected to an electrical load resistance and is subjected to harmonic excitations. A one-sided stopper with a nonlinear viscoelastic contact force model is used to represent the vibro-impact dynamics during collision. The coefficient of restitution is considered in order to model the energy dissipation in the form of viscoelastic effects. Two different discretization techniques, which are the long-time integration and finite difference methods, are employed in order to estimate the dynamical responses of the system and its levels of harvested power. The mathematical model is first verified with existing experimental data in the literature. The nonlinear collision stiffness was parameterized from soft to rigid, in order to investigate its effects on the maximum output power and bandwidth frequency. The influences of the base acceleration and restitution coefficient on the vibro-impact dynamics of the energy harvesting system are investigated. The results indicate the presence of period doubling, chaotic, and multi-stable responses with higher base acceleration values. The coefficient of restitution is varied from perfectly elastic to inelastic impacts to model the collision events as well as energy dissipation. It is demonstrated that the restitution coefficient affects the dynamics of the harvester and its levels of generated voltage. In fact, lower peaks of the harvested power and smaller regions of the resonant frequency are observed at low values of the coefficient of restitution. The results indicate the strong dependence of the energy harvester’s performance and its dynamics on the stiffness and restitution coefficient of the impact force as well as the level of input force to the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Aldraihem, O.J., Khdeir, A.A.: Precise deflection analysis of beams with piezoelectric patches. Composite Structures 60(2), 135–143 (2003)

    Article  Google Scholar 

  2. Alsaffar, Y., Aldraihem, O.J., Baz, A.: Impact and bandgap characteristics of periodic rods with viscoelastic inserts and local resonators. Journal of Vibration and Acoustics 143(4), 041011 (2021)

    Article  Google Scholar 

  3. Sharpes, N., Abdelkefi, A., Priya, S.: Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters. Applied Physics Letters 107(9), 093901 (2015)

    Article  Google Scholar 

  4. Amin, K., Inman, D.J.: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Applied Physics Letters 100(4), 042901 (2012)

    Article  Google Scholar 

  5. Mei, X., Dong, R., Sun, F., Zhou, R., Zhou, S.: Array piezoelectric energy harvester with frequency up-conversion in rotational motions: theoretical analyses and experimental validations. Nonlinear Dynamics 111(11), 9989–10009 (2023)

    Article  Google Scholar 

  6. Huang, D., Han, J., Li, W., Deng, H., Zhou, S.: Responses, optimization and prediction of energy harvesters under galloping and base excitations. Communications in Nonlinear Science and Numerical Simulation 119, 107086 (2023)

    Article  Google Scholar 

  7. Alvis, T., Abdelkefi, A.: Efficacy of vibro-impact energy harvesting absorbers on controlling dynamical systems under vortex-induced vibrations and base excitation. Ocean Engineering 272, 113816 (2023)

    Article  Google Scholar 

  8. Alvis, T., Abdelkefi, A.: Effective design of vibro-impact energy harvesting absorbers with asymmetric stoppers. The European Physical Journal Special Topics 231(8), 1567–1586 (2022)

    Article  Google Scholar 

  9. Alvis, T., Abdelkefi, A.: Effectiveness and nonlinear characterization of vibro-impact energy harvesting absorbers in controlling base-excited systems. Smart Materials and Structures 30(9), 095028 (2021)

    Article  Google Scholar 

  10. Tang, L., Yang, Y.: A nonlinear piezoelectric energy harvester with magnetic oscillator. Applied Physics Letters 101(9), 094102 (2012)

    Article  Google Scholar 

  11. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures 16(3), R1 (2007)

    Article  Google Scholar 

  12. Yang, Y., Tang, L., Li, H.: Vibration energy harvesting using macro-fiber composites. Smart Materials and Structures 18(11), 115025 (2009)

    Article  Google Scholar 

  13. Tang, L., Yang, Y., Soh, C.K.: Toward broadband vibration-based energy harvesting. Journal of Intelligent Material Systems and Structures 21(18), 1867–1897 (2010)

    Article  Google Scholar 

  14. Ou, Q., Chen, X., Gutschmidt, S., Wood, A., Leigh, N., Arrieta, A.F.: An experimentally validated double-mass piezoelectric cantilever model for broadband vibration-based energy harvesting. Journal of Intelligent Material Systems and Structures 23(2), 117–126 (2012)

    Article  Google Scholar 

  15. Arafa, M., Akl, W., Aladwani, A., Aldraihem, O.J., Baz, A.: Experimental implementation of a cantilevered piezoelectric energy harvester with a dynamic magnifier. In Active and Passive Smart Structures and Integrated Systems 7977, 264–272 (2011)

    Google Scholar 

  16. Wu, H., Tang, L., Yang, Y., Soh, C.K.: A compact 2 degree-of-freedom energy harvester with cut-out cantilever beam. Japanese Journal of Applied Physics 51(4R), 040211 (2012)

    Article  Google Scholar 

  17. Zhou, K., Dai, H.L., Abdelkefi, A., Zhou, H.Y., Ni, Q.: Impacts of stopper type and material on the broadband characteristics and performance of energy harvesters. AIP Advances 9(3), 035228 (2019)

    Article  Google Scholar 

  18. Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures 13(5), 1131 (2004)

    Article  Google Scholar 

  19. Anton, S.R., Inman, D.J.: Vibration energy harvesting for unmanned aerial vehicles. In Active and Passive Smart Structures and Integrated Systems 6928, 621–632 (2008)

    Google Scholar 

  20. Stanton, S.C., McGehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Applied Physics Letters 95(17), 174103 (2009)

    Article  Google Scholar 

  21. Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. Journal of Sound and Vibration 319(1–2), 515–530 (2009)

    Article  Google Scholar 

  22. Zhu, D., Beeby, S.P.: A broadband electromagnetic energy harvester with a coupled bistable structure. Journal of Physics 476, 012070 (2013)

    Google Scholar 

  23. Wang, G., Liao, W., Yang, B., Wang, X., Xu, W., Li, X.: Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier. Mechanical Systems and Signal Processing 105, 427–446 (2018)

    Article  Google Scholar 

  24. Arrieta, A.F., Hagedorn, P., Erturk, A.R., Inman, D.J.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Applied Physics Letters 97(10), 104102 (2010)

    Article  Google Scholar 

  25. Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. Journal of Sound and Vibration 330(10), 2339–2353 (2011)

    Article  Google Scholar 

  26. Cao, J., Zhou, S., Wang, W., Lin, J.: Influence of potential well depth on nonlinear tristable energy harvesting. Applied Physics Letters 106(17), 173903 (2015)

    Article  Google Scholar 

  27. Panyam, M., Daqaq, M.F.: Characterizing the effective bandwidth of tri-stable energy harvesters. Journal of Sound and Vibration 386, 336–358 (2017)

    Article  Google Scholar 

  28. Zhou, Z., Qin, W., Zhu, P.: Harvesting performance of quad-stable piezoelectric energy harvester: modeling and experiment. Mechanical Systems and Signal Processing 110, 260–272 (2018)

    Article  Google Scholar 

  29. Saunders, B.E., Vasconcellos, R., Kuether, R.J., Abdelkefi, A.: Characterization and interaction of geometric and contact/impact nonlinearities in dynamical systems. Mechanical Systems and Signal Processing 167, 108481 (2022)

    Article  Google Scholar 

  30. Saunders, B.E., Vasconcellos, R., Kuether, R.J., Abdelkefi, A.: Nonlinear dynamics, bifurcations, and multi-stability in a vibro-impact system with geometric and multi-segmented freeplay nonlinearities. Nonlinear Dynamics 111(20), 18655–18675 (2023)

    Article  Google Scholar 

  31. Challa, V.R., Prasad, M.G., Shi, Y., Fisher, F.T.: A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Materials and Structures 17(1), 015035 (2008)

    Article  Google Scholar 

  32. Zhu, D., Roberts, S., Tudor, J., Beeby, S.: Closed loop frequency tuning of a vibration-based micro-generator. Proceedings of the PowerMEMS 2008, Sendai, Japan, 09-12 Nov, pages 229–232, (2008)

  33. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Physical Review Letters 102(8), 080601 (2009)

    Article  Google Scholar 

  34. Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D Nonlinear Phenomena 239(10), 640–653 (2010)

    Article  Google Scholar 

  35. Ferrari, M., Ferrari, V., Guizzetti, M., Ando, B., Baglio, S., Trigona, C.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sensors and Actuators A Physical 162(2), 425–431 (2010)

    Article  Google Scholar 

  36. Lin, J., Alphenaar, B.: Enhancement of energy harvested from a random vibration source by magnetic coupling of a piezoelectric cantilever. Journal of Intelligent Material Systems and Structures 21(13), 1337–1341 (2010)

    Article  Google Scholar 

  37. Ando, B., Baglio, S., Trigona, C., Dumas, N., Latorre, L., Nouet, P.: Nonlinear mechanism in MEMS devices for energy harvesting applications. Journal of Micromechanics and Microengineering 20(12), 125020 (2010)

    Article  Google Scholar 

  38. Yang, Y., Tang, L.: Equivalent circuit modeling of piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures 20(18), 2223–2235 (2009)

    Article  Google Scholar 

  39. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters 94(25), 254102 (2009)

    Article  Google Scholar 

  40. Fan, K., Tan, Q., Zhang, Y., Liu, S., Cai, M., Zhu, Y.: A monostable piezoelectric energy harvester for broadband low-level excitations. Applied Physics Letters 112(12), 123901 (2018)

    Article  Google Scholar 

  41. Soliman, M.M., Abdel-Rahman, E.M., El-Saadany, E.F., Mansour, R.R.: A wideband vibration-based energy harvester. Journal of Micromechanics and Microengineering 18(11), 115021 (2008)

    Article  Google Scholar 

  42. Liu, H., Lee, C., Kobayashi, T., Tay, C.J., Quan, C.: Investigation of a mems piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Materials and Structures 21(3), 035005 (2012)

    Article  Google Scholar 

  43. Song, M., Zhang, Y., Peng, M., Zhai, J.: Low frequency wideband nano generators for energy harvesting from natural environment. Nano Energy 6, 66–72 (2014)

    Article  Google Scholar 

  44. Zhao, L., Yang, Y.: An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Applied Energy 212, 233–243 (2018)

    Article  Google Scholar 

  45. Hu, G., Tang, L., Das, R., Marzocca, P.: A two-degree-of-freedom piezoelectric energy harvester with stoppers for achieving enhanced performance. International Journal of Mechanical Sciences 149, 500–507 (2018)

    Article  Google Scholar 

  46. Wu, Y., Badel, A., Formosa, F., Liu, W., Agbossou, A.: Nonlinear vibration energy harvesting device integrating mechanical stoppers used as synchronous mechanical switches. Journal of Intelligent Material Systems and Structures 25(14), 1658–1663 (2014)

    Article  Google Scholar 

  47. Liu, S., Cheng, Q., Zhao, D., Feng, L.: Theoretical modeling and analysis of two-degree-of-freedom piezoelectric energy harvester with stopper. Sensors and Actuators A Physical 245, 97–105 (2016)

    Article  Google Scholar 

  48. Yang, Y., Shen, Q., Jin, J., Wang, Y., Qian, W., Yuan, D.: Rotational piezoelectric wind energy harvesting using impact-induced resonance. Applied Physics Letters 105(5), 053901 (2014)

    Article  Google Scholar 

  49. Halim, M.A., Khym, S., Park, J.Y.: Frequency up-converted wide bandwidth piezoelectric energy harvester using mechanical impact. Journal of Applied Physics 114(4), 044902 (2013)

    Article  Google Scholar 

  50. Gu, L., Livermore, C.: Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Materials and Structures 20(4), 045004 (2011)

    Article  Google Scholar 

  51. Wang, X., Chen, C., Wang, N., San, H., Yu, Y., Halvorsen, E., Chen, X.: A frequency and bandwidth tunable piezoelectric vibration energy harvester using multiple nonlinear techniques. Applied Energy 190, 368–375 (2017)

    Article  Google Scholar 

  52. Liu, D., Li, M., Li, J., Ma, J.: Performance analysis of nonlinear vibration energy harvesting system with inelastic barrier under colored noise excitation. Applied Mathematical Modelling 105, 243–257 (2022)

    Article  MathSciNet  Google Scholar 

  53. Li, M., Liu, D., Li, J.: Stochastic analysis of vibro-impact bistable energy harvester system under colored noise. Nonlinear Dynamics 111(18), 17007–17020 (2023)

    Article  Google Scholar 

  54. Hertz, H.: Miscellaneous papers, translated from first German edition (1895) by DE Jones and JA Schott. MacMillan, London, London (1896)

    Google Scholar 

  55. Lankarani, H.M., Nikravesh, P.E.: A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems. Journal of Mechanical Design 112(3), 369–376 (1990)

    Article  Google Scholar 

  56. Alves, J., Peixinho, N., da Silva, M.T., Flores, P., Lankarani, H.M.: A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mechanism and Machine Theory 85, 172–188 (2015)

    Article  Google Scholar 

  57. Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: Evolution of the hertz contact theory. Mechanism and Machine Theory 53, 99–121 (2012)

    Article  Google Scholar 

  58. Flores, P., Lankarani, H.M.: Contact force models for multibody dynamics. Springer, Berlin (2016)

    Book  Google Scholar 

  59. Nayfeh, A.H., Balachandran, B.: Applied nonlinear dynamics: analytical, computational, and experimental methods. Wiley (2008)

  60. Najar, F., Choura, S., Abdel-Rahman, E.M., El-Borgi, S., Nayfeh, A.H.: Dynamic analysis of variable-geometry electrostatic microactuators. Journal of Micromechanics and Microengineering 16(11), 2449 (2006)

    Article  Google Scholar 

  61. Najar, F., Ghommem, M., Abdel-Rahman, E.: Arch microbeam bifurcation gas sensors. Nonlinear Dynamics 104(2), 923–940 (2021)

    Article  Google Scholar 

  62. Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S., El-Borgi, S.: Nonlinear analysis of mems electrostatic microactuators: primary and secondary resonances of the first mode. Journal of Vibration and Control 16(9), 1321–1349 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript.

Corresponding author

Correspondence to Khalid Alluhydan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alluhydan, K., Najar, F. & Abdelkefi, A. Insights on the performance and dynamical characteristics of piezoelectric energy harvesters with dissipative viscoelastic impacts. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09737-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09737-y

Keywords

Navigation