Skip to main content
Log in

Experimental studies on active control of a dynamic system via a time-delayed absorber

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The traditional passive absorber is fully effective within a narrow and certain frequency band. To solve this problem, a time-delayed acceleration feedback is introduced to convert a passive absorber into an active one. Both the inherent and the intentional time delays are included. The former mainly comes from signal acquiring and processing, computing, and applying the actuation force, and its value is fixed. The latter is introduced in the controller, and its value is actively adjustable. Firstly, the mechanical model is established and the frequency response equations are obtained. The regions of stability are delineated in the plane of control parameters. Secondly, the design scheme of control para- meters is performed to help select the values of the feedback gain and time delay. Thirdly, the experimental studies are conducted. Effects of both negative and positive feedback control are investigated. Experimental results show that the proper choices of control parameters may broaden the effective frequency band of vibration absorption. Moreover, the time-delayed absorber greatly suppresses the resonant response of the primary system when the passive absorber totally fails. The experimental results are in good agreement with the theoretical predictions and numerical simulations.

Graphical Abstract

A time-delayed acceleration feedback is introduced to convert a passive absorber into an active one. The design scheme of control parameters is performed for selection guidance of the values of feedback gain and time delay. Experimental results show the effectiveness of the time-delayed absorber on suppressing the vibration of the primary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Den Hartog, J.P.: Mechanical Vibrations. Dover Publications Inc., New York (1985)

    Google Scholar 

  2. Fang, J., Wang, S.M., Wang, Q.: Optimal design of vibration absorber using minimax criterion with simplified constraints. Acta Mech. Sin. 28, 848–853 (2012)

    Article  MathSciNet  Google Scholar 

  3. Jovanovic, M.M., Simonovic, A.M., Zoric, N.D., et al.: Experimental studies on active vibration control of a smart composite beam using a PID controller. Smart Mater. Struct. 22, 115038 (2013)

    Article  Google Scholar 

  4. Guo, S.X., Li, Y.: Non-probabilistic reliability method and reliability-based optimal LQR design for vibration control of structures with uncertain-but-bounded parameters. Acta Mech. Sin. 29, 864–874 (2013)

    Article  MathSciNet  Google Scholar 

  5. Shan, J.J., Liu, H.T., Sun, D.: Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF). Mechatronics 15, 487–503 (2005)

    Article  Google Scholar 

  6. Lin, J., Liu, W.Z.: Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam. J. Sound Vib. 296, 567–582 (2006)

    Article  Google Scholar 

  7. Megahed, S.M., El-Razik, A.K.A.: Vibration control of two degrees of freedom system using variable inertia vibration absorbers: modeling and simulation. J. Sound Vib. 329, 4841–4865 (2010)

    Article  Google Scholar 

  8. Ghorbani-Tanha, A.K., Rahimian, M., Noorzad, A.: A Novel semiactive variable stiffness device and its application in a new semiactive tuned vibration absorber. J. Eng. Mech. ASCE 137, 390–399 (2011)

  9. Hidaka, S., Ahn, Y.K., Morishita, S.: Adaptive vibration control by a variable-damping dynamic absorber using ER fluid. J. Vib. Acoust. 121, 373–378 (1999)

    Article  Google Scholar 

  10. Udwadia, F.E., Phohomsiri, P.: Active control of structures using time delayed positive feedback proportional control designs. Struct. Control Health Monit. 13, 536–552 (2006)

    Article  Google Scholar 

  11. Wang, Z.H., Hu, H.Y.: A modified averaging scheme with application to the secondary Hopf bifurcation of a delayed van der Pol oscillator. Acta Mech. Sin. 24, 449–454 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhang, S., Xu, J.: Bursting-like motion induced by time-varying delay in an internet congestion control model. Acta Mech. Sin. 28, 1169–1179 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhen, B., Xu, J.: Influence of the time delay of signal transmission on synchronization conditions in drive-response systems. Theor. Appl. Mech. Lett. 3, 25–28 (2013)

    Article  Google Scholar 

  14. Jiang, S.Y., Xu, J., Yan, Y.: Stability and oscillations in a slow-fast flexible joint system with transformation delay. Acta Mech. Sin. 30, 727–738 (2014)

    Article  MathSciNet  Google Scholar 

  15. Nakamura, Y., Goto, S., Wakui, S.: Tuning methods of a Smith predictor for pneumatic active anti-vibration apparatuses. J. Adv. Mech. Des. Syst. Manuf. 7, 666–676 (2013)

    Google Scholar 

  16. Chung, L.L., Reinhorn, A.M., Soong, T.T.: Experiments on active control of seismic structures. J. Eng. Mech. 114, 241–256 (1988)

    Article  Google Scholar 

  17. Agrawa, A.K., Yang, J.N.: Compensation of time-delay for control of civil engineering structures. Earthq. Eng. Struct. Dyn. 29, 37–62 (2000)

    Article  Google Scholar 

  18. Liu, K., Chen, L.X., Cai, G.P.: An experimental study of delayed positive feedback control for a flexible plate. Int. J. Acoust. Vib. 17, 171–180 (2012)

    Google Scholar 

  19. Li, X.P., Wei, D.M., Zhu, W.Q.: Time-delayed feedback control optimization for quasi linear systems under random excitations. Acta Mech. Sin. 25, 395–402 (2009)

    Article  MATH  Google Scholar 

  20. Xu, J., Chung, K.W.: Effects of time delayed position feedback on a van der Pol-Duffing oscillator. Phys. D 180, 17–39 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Li, Z.C., Wang, Q., Gao, H.P.: Control of friction oscillator by Lyapunov redesign based on delayed state feedback. Acta Mech. Sin. 25, 257–264 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Olgac, N., Holm-Hansen, B.T.: A novel active vibration absorption technique–delayed resonator. J. Sound Vib. 176, 93–104 (1994)

    Article  MATH  Google Scholar 

  23. Olgac, N., Elmali, H., Hosek, M., et al.: Active vibration control of distributed systems using delayed resonator with acceleration feedback. J. Dyn. Syst. Meas. Control 119, 380–389 (1997)

    Article  MATH  Google Scholar 

  24. Sipahi, R., Olgac, N.: Active vibration suppression with time delayed feedback. J. Vib. Acoust. 125, 384–388 (2003)

    Article  Google Scholar 

  25. Wang, Z.H., Xu, Q.: Vibration control via positive delayed feedback. In: 10th Biennial International Conference on Vibration Problems (ICOVP), Prague, Czech Republic, SEP 05–08 (2011)

  26. Tootoonchi, A.A., Gholami, M.S.: Application of time delay resonator to machine tools. Int. J. Adv. Manuf. Technol. 56, 879–891 (2011)

    Article  Google Scholar 

  27. Liu, J., Liu, K.: Application of an active electromagnetic vibration absorber in vibration suppression. Struct. Control Health Monit. 17, 278–300 (2010)

    Google Scholar 

  28. Zhao, Y.Y., Xu, J.: Effects of delayed feedback control on nonlinear vibration absorber system. J. Sound Vib. 308, 212–230 (2007)

    Article  Google Scholar 

  29. Chatterjee, S., Mahata, P.: Time-delayed absorber for controlling friction-driven vibration. J. Sound Vib. 322, 39–59 (2009)

    Article  Google Scholar 

  30. El-Sayed, A.T., Bauomy, H.S.: Vibration control of helicopter blade flapping via time-delay absorber. Meccanica 49, 587–600 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  31. El-Gohary, H.A., El-Ganaini, W.A.A.: Vibration suppression of a dynamical system to multi-parametric excitations via time-delay absorber. Appl. Math. Model. 36, 35–45 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Elmali, H., Renzulli, M., Olgac, N.: Experimental comparison of delayed resonator and PD controlled vibration absorbers using electromagnetic actuators. J. Dyn. Syst. Meas. Control 122, 514–520 (2000)

    Article  Google Scholar 

  33. Hosek, M., Olgac, N.: A single-step automatic tuning algorithm for the delayed resonator vibration absorber. IEEE ASME Trans. Mechatron. 7, 245–255 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the State Key Program of National Natural Science Foundation of China (grant No. 11032009) and National Natural Science Foundation of China (grant No. 11272236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Sun, Y. Experimental studies on active control of a dynamic system via a time-delayed absorber. Acta Mech Sin 31, 229–247 (2015). https://doi.org/10.1007/s10409-015-0411-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0411-z

Keywords

Navigation