Skip to main content
Log in

Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

An Erratum to this article was published on 12 January 2013

Abstract

Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait more close to natural human-like gait. The proposed model extends the simplest walking model with the addition of flat feet and torsional spring based compliance on ankle joints and toe joints, to achieve stable walking on a slope driven by gravity. The push-off phase includes foot rotations around the toe joint and around the toe tip, which shows a great resemblance to human normal walking. This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carson, M. C., Harrington, M. E., Thompson, N., et al.: Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis. J. Biomech. 34, 1299–1307 (2001)

    Article  Google Scholar 

  2. MacWilliams, B. A., Cowley, M., Nicholson, D. E.: Foot kinematics and kinetics during adolescent gait. Gait and Posture. 17, 214–224 (2003)

    Article  Google Scholar 

  3. Myers, K. A., Wang, M., Marks, R. M., et al.: Validation of a multisegment foot and ankle kinematic model for pediatric gait. IEEE Trans. Neur. Sys. Reh. 12(1), 122–130 (2004)

    Article  Google Scholar 

  4. Okita, N., Meyers, S. A., Challis, J. H., et al.: An objective evaluation of a segmented foot model. Gait and Posture. 30, 27–34 (2009)

    Article  Google Scholar 

  5. Nishiwaki, K., Kagami, S., Kuniyoshi, Y., et al.: Toe joints that enhance bipedal and fullbody motion of humanoid robots. In: Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington DC, America, 3105–3110 (2002)

  6. Sellaouti, R., Stasse, O., Kajita, S., et al.: Faster and smoother walking of humanoid HRP-2 with passive toe joints. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 4909–4914 (2006)

  7. Yamamoto, K., Sugihara, T., Nakamura, Y.: Toe joint mechanism using parallel four-bar linkage enabling humanlike multiple support at toe pad and toe tip. In: Proceedings of the IEEE-RAS 7th International Conference on Humanoid Robots, Fukuoka, Japan, 410–415 (2007)

  8. Hirai, K., Hirose, M., Haikawa, Y., et al.: The development of the Honda humanoid robot. In: Proceedings of IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1321–1326 (1998)

  9. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9, 68–82 (1990)

    Article  Google Scholar 

  10. Garcia, M., Chatterjee, A., Ruina, A., et al.: The simplest walking model: stability, complexity, and scaling. ASME J. Biomech. Eng. 120, 281–288 (1998)

    Article  Google Scholar 

  11. Collins, S., Wisse, M., Ruina, A.: A three-dimensional passivedynamic walking robot with two legs and knees. Int. J. Robot. Res. 20, 607–615 (2001)

    Article  Google Scholar 

  12. Collins, S., Ruina, A. Tedrake, R., et al.: Efficient bipedal robots based on passive-dynamic walkers. Science. 307, 1082–1085 (2005)

    Article  Google Scholar 

  13. Kwan, M., Hubbard, M.: Optimal foot shape for a passive dynamic biped. J. Theor. Biol. 248, 331–339 (2007)

    Article  Google Scholar 

  14. Hobbelen, D. G. E., Wisse, M.: Ankle actuation for limit cycle walkers. Int. J. Robot. Res. 27, 709–735 (2008)

    Article  Google Scholar 

  15. Wang, Q., Huang, Y., Wang, L.: Passive dynamic walking with flat feet and ankle compliance. Robotica. 28, 413–425 (2010)

    Article  Google Scholar 

  16. Wang, Q., Huang, Y., Zhu, J., et al.: Effects of foot shape on energetic efficiency and dynamic stability of passive dynamic biped with upper body. Int. J. Human. Robot. 7(2), 1–18 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, Y., Wang Q., Chen B., et al.: Modeling and gait selection of passivity-based seven-link bipeds with dynamic series, Robotica. 30, 39–51 (2012)

    Article  Google Scholar 

  18. Kumar, R. P., Yoon, J., Christiand, et al.: The simplest passive dynamic walking model with toed feet: a parametric study. Robotica. 27, 701–703 (2009)

    Article  Google Scholar 

  19. Ker, R. F., Alexander, R., Mc N., Bennett, M. B.: Why are mammalian tendons so thick? J. Zool. London. 216, 309–324 (1988)

    Article  Google Scholar 

  20. Weiss, P. L., Kearney, R. E., Hunter, I.W.: Position dependence of ankle joint dynamicsłI. Passive mechanics. J. Biomech. 19(9), 727–735 (1986)

    Article  Google Scholar 

  21. Weiss, P. L., Kearney, R. E., Hunter, I.W.: Position dependence of ankle joint dynamicsłII. Active mechanics. J. Biomech. 19(9), 737–751 (1986)

    Article  Google Scholar 

  22. Frigo, C., Crenna, P., Jensen, L. M.: Moment-angle relationship at lower limb joints during human walking at different velocities. J. Electromyogr. Kinesiol. 6(3), 177–190 (1996)

    Article  Google Scholar 

  23. Huang, Y., Chen, B., Wang, Q., et al.: Effects of segmented feet on energetic efficiency of passive dynamic walking. In: Proceedings of the 13th International Conference on Climbing and Walking Robots, Nagoya, Japan (2010)

  24. Huang, Y., Chen, B., Wang, Q., et al.: Adding segmented feet to passive dynamic walkers. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, Canada (2010)

  25. Kuo, A. D.: A simple model of bipedal walking predicts the preferred speedCstep length relationship. J. Biomech. Eng. 123, 264–269 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Ning Wang.

Additional information

The project was supported by the National Natural Science Foundation of China (61005082, 61020106005), Doctoral Fund of Ministry of Education of China (20100001120005), PKU-Biomedical Engineering Join Seed Grant 2012 and the 985 Project of Peking University (3J0865600).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Wang, QN., Gao, Y. et al. Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints. Acta Mech Sin 28, 1457–1465 (2012). https://doi.org/10.1007/s10409-012-0079-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0079-6

Keywords

Navigation