Skip to main content
Log in

Pressure-driven flow through PDMS-based flexible microchannels and their applications in microfluidics

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Flexible microchannels have soft walls which undergo deformation under the influence of fluid flow. The dimensional and flexural similarity of flexible microchannels make them ideal candidates for mimicking biological structures such as blood vessels and air pathway in lungs. The analysis of fluid flow and the dynamics of interaction of cells through flexible arteries provide valuable insights about cardiovascular-related diseases. Flexible microchannels can be instrumental in the in vitro investigation of such diseases. This review discusses the recent developments in pressure-driven flow through flexible microchannels and their applications. Here we present the existing theoretical models that predict the deformation and pressure-flow characteristics of flexible microchannels and the corresponding experimental validations. We compare the models for laminar flow of Newtonian fluids through flexible microchannels with their corresponding experimental validation and enlist their limitations. We discuss in detail the various applications of flexible microchannels and their relevance in cell mechanophenotyping, micropumps, microflow stabilizers, and organ-on-chip devices. The insight into the flow dynamics provided herein will extend using flexible microchannels to develop organs-on-chip and other microfluidic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Adzima BJ, Velankar SS (2006) Pressure drops for droplet flows in microfluidic channels. J Micromech Microeng 16(8):1504–1510

    Article  Google Scholar 

  • Anoop R, Sen AK (2015) Capillary flow enhancement in rectangular polymer microchannels with a deformable wall. Phys Rev E 92(1):013024

    Article  MathSciNet  Google Scholar 

  • Becker H, Gärtner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21(1):12–26

    Article  Google Scholar 

  • Beech JP, Tegenfeldt JO (2008) Tuneable separation in elastomeric microfluidics devices. Lab Chip 8(5):657–659

    Article  Google Scholar 

  • Brown XQ, Ookawa K, Wong JY (2005) Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: Interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response. Biomaterials 26(16):3123–3129

    Article  Google Scholar 

  • Bruus H (2008) Theoretical microfluidics. Oxford University Press, Oxford

    Google Scholar 

  • Bufler H (1971) Theory of elasticity of a multilayered medium. J Elast 1(2):125–143

    Article  MathSciNet  Google Scholar 

  • Chakraborty D, Prakash JR, Friend J, Yeo L (2012) Fluid-structure interaction in deformable microchannels. Phys Fluids 24(10):102002

    Article  Google Scholar 

  • Chen Y, Zhang L, Chen G (2008) Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Electrophoresis 29(9):1801–1814

    Article  Google Scholar 

  • Cheung P, Toda-Peters K, Shen AQ (2012) In situ pressure measurement within deformable rectangular polydimethylsiloxane microfluidic devices. Biomicrofluidics 6(2):026501

    Article  Google Scholar 

  • Christov IC, Cognet V, Shidhore TC, Stone HA (2018) Flow rate-pressure drop relation for deformable shallow microfluidic channels. J Fluid Mech 841:267–286

    Article  MathSciNet  Google Scholar 

  • Darby SG, Moore MR, Friedlander TA et al (2010) A metering rotary nanopump for microfluidic systems. Lab Chip 10(23):3218–3226

    Article  Google Scholar 

  • Eroshenko N, Ramachandran R, Yadavalli VK, Rao RR (2013) Effect of substrate stiffness on early human embryonic stem cell differentiation. J Biol Eng 7(1):7

    Article  Google Scholar 

  • George D, Anoop R, Sen AK (2015) Elastocapillary powered manipulation of liquid plug in microchannels. Appl Phys Lett 107(26):261601

    Article  Google Scholar 

  • Gervais T, El-Ali J, Günther A, Jensen KF (2006) Flow-induced deformation of shallow microfluidic channels. Lab Chip 6(4):500–507

    Article  Google Scholar 

  • Guan G, Chen PCY, Peng WK et al (2012) Real-time control of a microfluidic channel for size-independent deformability cytometry. J Micromech Microeng 22(10):105037

    Article  Google Scholar 

  • Hardy BS, Uechi K, Zhen J, Kavehpour HP (2009) The deformation of flexible PDMS microchannels under a pressure driven flow. Lab Chip 9(7):935–938

    Article  Google Scholar 

  • Ho KKY, Lee LM, Liu AP (2016) Mechanically activated artificial cell by using microfluidics. Sci Rep 6:32912

    Article  Google Scholar 

  • Holden MA, Kumar S, Beskok A, Cremer PS (2003) Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow. J Micromech Microeng 13(3):412–418

    Article  Google Scholar 

  • Hosokawa K, Hanada K, Maeda R (2002) A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices. J Micromech Microeng 12(1):1–6

    Article  Google Scholar 

  • Huang SB, Zhao Y, Chen D et al (2014) A clogging-free microfluidic platform with an incorporated pneumatically driven membrane-based active valve enabling specific membrane capacitance and cytoplasm conductivity characterization of single cells. Sens Actuator B-Chem 190:928–936

    Article  Google Scholar 

  • Huh D, Fujioka H, Tung Y-C et al (2007) Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci 104(48):18886–18891

    Article  Google Scholar 

  • Huh D, Matthews BD, Mammoto A et al (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668

    Article  Google Scholar 

  • Ichikawa N, Hosokawa K, Maeda R (2004) Interface motion of capillary-driven flow in rectangular microchannel. J Colloid Interface Sci 280(1):155–164

    Article  Google Scholar 

  • Iyer V, Raj A, Annabattula RK, Sen AK (2015) Experimental and numerical studies of a microfluidic device with compliant chambers for flow stabilization. J Micromech Microeng 25(7):075003

    Article  Google Scholar 

  • Jang K-J, Suh K-Y (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10(1):36–42

    Article  Google Scholar 

  • Kim YW, Yoo JY (2008) The lateral migration of neutrally-buoyant spheres transported through square microchannels. J Micromech Microeng 18(6):065015

    Article  Google Scholar 

  • Kumar N, George D, Sajeesh P et al (2016) Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements. J Micromech Microeng 26(7):075013

    Article  Google Scholar 

  • Lee C-H, Hsiung S-K, Lee G-B (2007) A tunable microflow focusing device utilizing controllable moving walls and its applications for formation of micro-droplets in liquids. J Micromech Microeng 17(6):1121–1129

    Article  Google Scholar 

  • Li H, Olsen MG (2006) MicroPIV measurements of turbulent flow in square microchannels with hydraulic diameters from 200 µm to 640 µm. Int J Heat Fluid Flow 27(1):123–134

    Article  Google Scholar 

  • Lighthill MJ (1968) Pressure-forcing of tightly fitting pellets along fluid-filled elastic tubes. J Fluid Mech 34(1):113–143

    Article  Google Scholar 

  • Maria MS, Rakesh PE, Chandra TS, Sen AK (2017) Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation. Sci Rep 7:43457

    Article  Google Scholar 

  • Mazumdar JN (1992) Biofluid mechanics. World Sci, Singapore

    Book  Google Scholar 

  • Michel B, Bernard A, Bietsch A, Delamarche E (2001) Printing meets lithography: soft approaches to high-resolution printing. IBM J Res Dev 45(5):697–719

    Article  Google Scholar 

  • Palchesko RN, Zhang L, Sun Y, Feinberg AW (2012) Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One 7(12):e51499

    Article  Google Scholar 

  • Pang Y, Kim H, Liu Z, Stone H (2014) A soft microchannel decreases polydispersity of droplet generation. Lab Chip 14(20):4029–4034

    Article  Google Scholar 

  • Raj A, Sen AK (2016) Flow-induced deformation of compliant microchannels and its effect on pressure—flow characteristics. Microfluid Nanofluidics 20(2):31

    Article  Google Scholar 

  • Raj A, Sen AK (2018) Entry and passage behavior of biological cells in a constricted compliant microchannel. RSC Adv 8(37):20884–20893

    Article  Google Scholar 

  • Raj A, Halder R, Sajeesh P, Sen AK (2016) Droplet generation in a microchannel with a controllable deformable wall. Microfluid Nanofluidics 20(7):102

    Article  Google Scholar 

  • Raj MK, DasGupta S, Chakraborty S (2017) Hydrodynamics in deformable microchannels. Microfluid Nanofluidics 21(4):70

    Article  Google Scholar 

  • Ravetto A, Hoefer IE, den Toonder JMJ, Bouten CVC (2016) A membrane-based microfluidic device for mechano-chemical cell manipulation. Biomed Microdevices 18(2):31

    Article  Google Scholar 

  • Reddy SP, Samy RA, Sen AK (2016) Interaction of elastocapillary flows in parallel microchannels across a thin membrane. Appl Phys Lett 109(14):141601

    Article  Google Scholar 

  • Shidhore TC, Christov IC (2017) Static response of deformable microchannels: A comparative modelling study. J Phys Condens Matter 30(5):054002

    Article  Google Scholar 

  • Shin M, Matsuda K, Ishii O et al (2004) Endothelialized networks with a vascular geometry in microfabricated poly (dimethyl siloxane). Biomed Microdevices 6(4):269–278

    Article  Google Scholar 

  • Singh S, Kumar N, George D, Sen AK (2015) Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump. Sens Actuators A Phys 225:81–94

    Article  Google Scholar 

  • Sneha Maria M, Rakesh PE, Chandra TS, Sen AK (2016) Capillary flow of blood in a microchannel with differential wetting for blood plasma separation and on-chip glucose detection. Biomicrofluidics 10(5):054108

    Article  Google Scholar 

  • Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19(22):9127–9133

    Article  Google Scholar 

  • Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  • Walter N, Micoulet A, Seufferlein T, Spatz JP (2011) Direct assessment of living cell mechanical responses during deformation inside microchannel restrictions. Biointerphases 6(3):117–125

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  Google Scholar 

  • Xiang J, Cai Z, Zhang Y, Wang W (2016) A micro-cam actuated linear peristaltic pump for microfluidic applications. Sens Actuators A Phys 251:20–25

    Article  Google Scholar 

  • Yang B, Lin Q (2009) A compliance-based microflow stabilizer. J Microelectromech Syst 18(3):539–546

    Article  Google Scholar 

  • Zhang W, Choi DS, Nguyen YH et al (2013) Studying cancer stem cell dynamics on PDMS surfaces for microfluidics device design. Sci Rep 3:2332

    Article  Google Scholar 

  • Zhang X, Chen Z, Huang Y (2015) A valve-less microfluidic peristaltic pumping method. Biomicrofluidics 9(1):014118

    Article  Google Scholar 

  • Zheng Y, Fujioka H, Bian S et al (2009) Liquid plug propagation in flexible microchannels: a small airway model. Phys Fluids 21(7):071903

    Article  Google Scholar 

  • Zheng Y, Shojaei-Baghini E, Azad A et al (2012) High-throughput biophysical measurement of human red blood cells. Lab Chip 12(14):2560–2567

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Sen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, A., Suthanthiraraj, P.P.A. & Sen, A.K. Pressure-driven flow through PDMS-based flexible microchannels and their applications in microfluidics. Microfluid Nanofluid 22, 128 (2018). https://doi.org/10.1007/s10404-018-2150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2150-5

Keywords

Navigation