Skip to main content
Log in

Magnetohydrodynamics in narrow fluidic channels in presence of spatially non-uniform magnetic fields: framework for combined magnetohydrodynamic and magnetophoretic particle transport

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, we bring out the implications of a spatially varying magnetic field towards combined magnetohydrodynamic–magnetophoretic transport in narrow fluidic confinements. We first present a generic framework for describing the flow field that is generated under the combined influences of a driving pressure gradient, an axial electric field, and a spatially varying transverse magnetic field. As a demonstrative example, we derive analytical solutions for the flow field, based on a plausible choice of the mathematical form of the nature of spatial variation of the magnetic field. Proceeding further ahead, we also address the magnetophoretic motion of particles, subjected to such spatially varying magnetic fields. We depict the trajectories of representative spherical particles in the flow-field, as a combined consequence of the magnetohydrodynamic and magnetophoretic forcing mechanisms. We also demonstrate that such combined magnetophoretic and magnetohydrodynamic transport can be employed as a novel technique to separate particles based on sizes and electromagnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreu JS, Camacho J, Faraudo J, Benelmekki M, Rebollo C, Martinez LM (2011) Simple analytical model for the magnetophoretic separation of superparamagnetic dispersions in a uniform magnetic gradient. Phys Rev E 84:021402

    Article  Google Scholar 

  • Annavarapu VNR (2010) Size based separation of submicron nonmagnetic particles through magnetophoresis in structured obstacle arrays. PhD dissertation, MIT, Cambridge

  • Benelmekki M, Montras A, Martins AJ, Coutinho PJG, Martinez LM (2011) Magnetophoresis behaviour at low gradient magnetic field and size control of nickel single core nanobeads. J Magn Magn Mater 323:1945–1949

    Article  Google Scholar 

  • Carstoiu J (1968) Fundamental equations of electromagnetodynamics of fluids: various consequences. Proc Natl Acad Sci USA 59:326–331

    Article  Google Scholar 

  • Chakraborty S, Paul D (2006) Microchannel flow control through a combined electromagnetohydrodynamic transport. J Phys D: Appl Phys 39:5364–5371

    Article  Google Scholar 

  • Das S, Chakraborty S (2008a) Electrokinetic separation of charged macromolecules in nanochannels within the continuum regime: effects of wall interactions and hydrodynamic confinements. Electrophoresis 29:1115–1124

    Article  Google Scholar 

  • Das S, Chakraborty S (2008b) Transport and separation of charged macromolecules under nonlinear electromigration in nanochannels. Langmuir 24:7704–7710

    Article  Google Scholar 

  • Das S, Chakraborty S (2009) Influence of streaming potential on the transport and separation of charged spherical solutes in nanochannels subjected to particle-wall interactions. Langmuir 25:9863–9872

    Article  Google Scholar 

  • De Las Cuevas G, Faraudo J, Camacho J (2008) Low-gradient magnetophoresis through field-induced reversible aggregation. J Phys Chem C 112:945–950

    Article  Google Scholar 

  • Erb RM, Yellen BB (2009) Magnetic manipulation of colloidal particles. In: Liu JP (ed) Nanoscale magnetic materials and applications. Springer, New York, pp 563–590

  • Furlani EP (2006) Analysis of particle transport in a magnetophoretic microsystem. J Appl Phys 99(2):024912

    Article  Google Scholar 

  • Furlani EP (2007) Magnetophoretic separation of blood cells at the microscale. J Phys D Appl Phys 40:1313–1319

    Article  Google Scholar 

  • Furlani EJ, Furlani EP (2007) A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J Magn Magn Mat 312(1):187–193

    Article  Google Scholar 

  • Furlani EP, Ng KC (2006) Analytical model of magnetic nanoparticle capture in the microvasculature. Phys Rev E 73(6):Art. No. 061919, Part 1

  • Furlani EP, Sahoo Y (2006) Analytical model for the magnetic field and force in a magnetophoretic microsystem. J Phys D Appl Phys 39:1724–1732

    Article  Google Scholar 

  • Furlani EP, Sahoo Y, Ng KC, Wortman JC, Monk TE (2007) A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed Microdev 9(4):451–463

    Article  Google Scholar 

  • Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1:22–40

    Google Scholar 

  • Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110:1518–1563

    Article  Google Scholar 

  • Gunde AC, Mitra SK (2009) Simulation of flow control in microchannels using ferrofluid plugs. In: Proceedings of the 7th international conference on nanochannels, microchannels, and minichannels 2009, ICNMM2009 (Part B), pp 985–989

  • Han KH, Frazier AB (2006) Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 6:265–273

    Article  Google Scholar 

  • Helseth LE, Skodvin T (2009) Optical monitoring of low-field magnetophoretic separation of particles. Meas Sci Technol 20:095202

    Article  Google Scholar 

  • Jones TB (1995) Electromechanics of particles. Cambridge University Press, New York

  • Jung YD, Choi Y, Han KH, Fraizer AB (2010) Six-stage cascade paramagnetic mode magnetophoretic separation system for human blood samples. Biomed Microdev 12:637–645

    Article  Google Scholar 

  • Kashevskii BE, Kashevskii SB, Prokhorov IV, Aleksandrova EN, Istomin YP (2006) Magnetophoresis and the magnetic susceptibility of HeLa tumor cells. Cell Biophys 51:1026–1032

    Google Scholar 

  • Kirby BJ (2010) Micro- and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, Cambridge

  • Li P, Mahmood A, Lee GU (2011) Flow-enhanced nonlinear magnetophoresis for high-resolution bioseparation. Langmuir 27:6496–6503

    Article  Google Scholar 

  • Lim J, Lanni C, Evarts ER, Lanni F, Tilton RD, Majetich SA (2011) Magnetophoresis of nanoparticles. ACS Nano 5:217–226

    Article  Google Scholar 

  • Liu CX, Stakenborg T, Peeters S, Lagae L (2009) Cell manipulation with magnetic particles toward microfluidic cytometry. J Appl Phys 105:102011–102014

    Article  Google Scholar 

  • Munshi F, Chakraborty S (2009) Hydroelectrical energy conversion in narrow confinements in the presence of transverse magnetic fields with electrokinetic effects. Phys Fluid 21:122003

    Article  Google Scholar 

  • Mikkelsen C, Hansen MF, Bruus H (2005) Theoretical comparison of magnetic and hydrodynamic interactions between magnetically tagged particles in microfluidic systems. J Magn Magn Mater 293:578–583

    Article  Google Scholar 

  • Nandy K, Chaudhuri S, Ganguly R, Puri IK (2008) Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices. J Magn Magn Mat 320:1398–1405

    Article  Google Scholar 

  • Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12:1–16

    Article  Google Scholar 

  • Pamme N (2006) Magnetism and microfluidics. Lab Chip 6:24–38

    Article  Google Scholar 

  • Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76:7250–7256

    Article  Google Scholar 

  • Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6:974–980

    Article  Google Scholar 

  • Paul D, Chakraborty S (2007) Wall effects in microchannel-based macromolecular separation under electromagnetohydrodynamic influences. J App Phys 102:074921

    Article  Google Scholar 

  • Qin M, Bau HH (2011) When MHD-based microfluidics is equivalent to pressure-driven flow. Microfluid Nanofluid 10:287–300

    Article  Google Scholar 

  • Rosensweig RE (1987) Magnetic fluids. Annu Rev Fluid Mech 19:437–463

    Article  Google Scholar 

  • Smoluchowski M (1903) Contribution la thorie lendosmose lectrique et de quelques phnomnes corrlatifs. Krak Anz 8:182–199

    Google Scholar 

  • Suwa M, Watarai H (2011) Magnetoanalysis of micro/nanoparticles: a review. Anal Chim Acta 690:137–147

    Article  Google Scholar 

  • Watarai H, Suwa M, Iiguni Y (2004) Magnetophoresis and electromagnetophoresis of microparticles in liquids. Anal Bioanal Chem 378:1693–1699

    Article  Google Scholar 

  • Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967

    Article  Google Scholar 

  • Yellen BB, Friedman G (2004) Programmable assembly of colloidal particles using magnetic microwell templates. Langmuir 20:2553–2559

    Article  Google Scholar 

  • Yellen BB, Friedman G, Feinerman A (2003) Printing superparamagnetic colloidal particle arrays on patterned magnetic film. J Appl Phys 93:7331–7333

    Article  Google Scholar 

  • Yellen BB, Hovorka O, Friedman G (2005) Arranging matter by magnetic nanoparticle assemblers. Proc Natl Acad Sci USA 102:8860–8864

    Article  Google Scholar 

  • Zborowski M, Ostera GR, Moore LR, Milliron S, Chalmers JJ, Schechtery AN (2003) Red blood cell magnetophoresis. Biophys J 84:2638–2645

    Article  Google Scholar 

  • Zhu TT, Marrero F, Mao LD (2010) Continuous separation of nonmagnetic particles inside ferrofluids. Microfluid Nanofluid 9:1003–1009

    Article  Google Scholar 

  • Zhu J, Liang L, Xuan X (2012) On-chip manipulation of nonmagnetic particles in paramagnetic solutions using embedded permanent magnets. Microfluid Nanofluid 12:65–73

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for providing financial support to S.D. in form of the Banting Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushanta K. Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Chakraborty, S. & Mitra, S.K. Magnetohydrodynamics in narrow fluidic channels in presence of spatially non-uniform magnetic fields: framework for combined magnetohydrodynamic and magnetophoretic particle transport. Microfluid Nanofluid 13, 799–807 (2012). https://doi.org/10.1007/s10404-012-1001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1001-z

Keywords

Navigation