Skip to main content
Log in

Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale

  • Review Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Micro-magnetofluidics refers to the science and technology that combines magnetism with microfluidics to gain new functionalities. Magnetism has been used for actuation, manipulation and detection in microfluidics. In turn, microfluidic phenomena can be used for making tunable magnetic devices. This paper presents a systematic review on the interactions between magnetism and fluid flow on the microscale. The review rather focuses on physical and engineering aspects of micro-magnetofluidics, than on the biological applications which have been addressed in a number of previous excellent reviews. The field of micro-magnetofluidics can be categorized according to the type of the working fluids and the associated microscale phenomena of established research fields such as magnetohydrodynamics, ferrohydrodynamics, magnetorheology and magnetophoresis. Furthermore, similar to microfluidics the field can also be categorized as continuous and digital micro-magnetofluidics. Starting with the analysis of possible magnetic forces in microscale and the impact of miniaturization on these forces, the paper revisits the use of magnetism for controlling fluidic functions such as pumping, mixing, magnetowetting as well as magnetic manipulation of particles. Based on the observations made with the state of the art of the field micro-magnetofluidics, the paper presents some perspectives on the possible future development of this field. While the use of magnetism in microfluidics is relatively established, possible new phenomena and applications can be explored by utilizing flow of magnetic and electrically conducting fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams JD, Kim U, Soh HT (2008) Multitarget magnetic activated cell sorter. Proc Natl Acad Sci USA 105(47):18165–18170

    Google Scholar 

  • Afshar R, Moser Y, Lehnert T, Gijs MAM (2011) Three-dimensional magnetic focusing of superparamagnetic beads for on-chip agglutination assays. Anal Chem 83(3):1022–1029

    Article  Google Scholar 

  • Ahn JJ, Oh J, Choi B (2004) A novel type of a microfluidic system using ferrofluids for an application of μ-tas. Microsyst Technol 10(8-9):622–627

    Article  Google Scholar 

  • Ando B, Ascia A, Baglio S, Beninato A (2009a) The “one drop” ferrofluidic pump with analog control. Sens Actuators A Phys 156(1):251–256

    Article  Google Scholar 

  • Ando B, Ascia A, Baglio S, Pitrone N (2009b) Ferrofluidic pumps: a valuable implementation without moving parts. IEEE Trans Instrum Meas 58(9):3232–3237

    Article  Google Scholar 

  • Aussillous P, Quéré D (2001) Liquid marbles. Nature 411(6840):924–927

    Article  Google Scholar 

  • Berim GO, Ruckenstein E (2011) Nanodrop of an ising magnetic fluid on a solid surface. Langmuir 27(14):8753–8760

    Article  Google Scholar 

  • Beyzavi A, Nguyen NT (2009) One-dimensional actuation of a ferrofluid droplet by planar microcoils. J Phys D Appl Phys 42(1):015004

    Google Scholar 

  • Beyzavi A, Nguyen NT (2010) Programmable two-dimensional actuation of ferrofluid droplet using planar microcoils. J Micromech Microeng 20(1):015018

    Google Scholar 

  • Bormashenko E, Pogreb R, Bormashenko Y, Musin A, Stein T (2008) New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces. Langmuir 24(21):12119–12122

    Google Scholar 

  • Burdick J, Laocharoensuk R, Wheat PM, Posner JD, Wang J (2008) Synthetic nanomotors in microchannel networks: Directional microchip motion and controlled manipulation of cargo. J Am Chem Soc 130(26):8164–8165

    Article  Google Scholar 

  • Chen C, Cheng Z (2008) An experimental study on Rosensweig instability of a ferrofluid droplet. Phys Fluids 20(5)

  • Chen CY, Wu SY, Miranda JA (2007) Fingering patterns in the lifting flow of a confined miscible ferrofluid. Phys Rev E Stat Nonlinear Soft Matter Phys 75(3):036310

    Google Scholar 

  • Chen CY, Chen C, Lee WH (2009) Experiments on breakups of a magnetic fluid drop through a micro-orifice. J Magnet Magnet Mater 321(20):3520–3525

    Article  Google Scholar 

  • Choi JW, Liakopoulos TM, Ahn CH (2001) An on-chip magnetic bead separator using spiral electromagnets with semi-encapsulated permalloy. Biosens Bioelectron 16(6):409–416

    Article  Google Scholar 

  • Cowley MD, Rosensweig RE (1967) The interfacial instability of magnetic fluid. J Fluid Mech 30:671–688

    Google Scholar 

  • Davidson PA (2011) An introduction to magnetohydrodynamics. Cambridge University Press

  • Deng T, Whitesides GM, Radhakrishnan M, Zabow G, Prentiss M (2001) Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography. Appl Phys Lett 78(12):1775–1777

    Article  Google Scholar 

  • Derec C, Wilhelm C, Servais J, Bacri J (2010) Local control of magnetic objects in microfluidic channels. Microfluid Nanofluid 8(1):123–130

    Article  Google Scholar 

  • Doyle PS, Bibette J, Bancaud A, Viovy J (2002) Self-assembled magnetic matrices for dna separation chips. Science 295(5563):2237

    Article  Google Scholar 

  • Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437(7060):862–865

    Article  Google Scholar 

  • Eijkel JCT, Dalton C, Hayden CJ, Burt JPH, Manz A (2003) A circular AC magnetohydrodynamic micropump for chromatographic applications. Sens Actuators B Chem 92(1–2):215–221

    Article  Google Scholar 

  • Fischer P, Ghosh A (2011) Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control. Nanoscale 3(2):557–563

    Article  Google Scholar 

  • Friedman G, Yellen B (2005) Magnetic separation, manipulation and assembly of solid phase in fluids. Curr Opin Colloid Interface Sci 10(3–4):158–166

    Article  Google Scholar 

  • Ganguly R, Puri IK (2010) Microfluidic transport in magnetic mems and biomems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(4):382–399

    Article  Google Scholar 

  • Garstecki P, Tierno P, Weibel DB, Sagus F, Whitesides GM (2009) Propulsion of flexible polymer structures in a rotating magnetic field. J Phys Condens Matter 21(20)

  • Ghost A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6):2243–2245

    Article  Google Scholar 

  • Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1(1):22–40

    Google Scholar 

  • Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563

    Article  Google Scholar 

  • Han K, Frazier AB (2006) Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab on a Chip Miniaturisation Chem Biol 6(2):265–273

    Article  Google Scholar 

  • Hartshorne H, Backhouse CJ, Lee WE (2004) Ferrofluid-based microchip pump and valve. Sens Actuators B Chem 99(2–3):592–600

    Google Scholar 

  • Hatch A, Kamholz AE, Holman G, Yager P, Bhringer KF (2001) A ferrofluidic magnetic micropump. J Microelectromech Syst 10(2):215–221

    Article  Google Scholar 

  • Homsy A, Linder V, Lucklum F, de Rooij NF (2007) Magnetohydrodynamic pumping in nuclear magnetic resonance environments. Sens Actuators B Chem 123(1):636–646

    Article  Google Scholar 

  • Jang J, Lee SS (2000) Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sens Actuators A Phys 80(1):84–89

    Article  Google Scholar 

  • Joung J, Shen J, Grodzinski P (2000) Micropumps based on alternating high-gradient magnetic fields. IEEE Trans Magnet 36(4 PART 2):2012–2014

    Article  Google Scholar 

  • Jung Y, Choi Y, Han K, Frazier AB (2010) Six-stage cascade paramagnetic mode magnetophoretic separation system for human blood samples. Biomed Microdevices 12(4):637–645

    Article  Google Scholar 

  • Kang H, Choi B (2011) Development of the MHD micropump with mixing function. Sens Actuators A Phys 165(2):439–445

    Article  Google Scholar 

  • Kang JH, Park J (2007) Magnetophoretic continuous purification of single-walled carbon nanotubes from catalytic impurities in a microfluidic device. Small 3(10):1784–1791

    Article  Google Scholar 

  • Kang JH, Choi S, Lee W, Park J (2008) Isomagnetophoresis to discriminate subtle difference in magnetic susceptibility. J Am Chem Soc 130(2):396–397

    Article  Google Scholar 

  • Kline TR, Paxton WF, Mallouk TE, Sen A (2005) Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angewandte Chemie Int Ed 44(5):744–746

    Article  Google Scholar 

  • Kong TF, Huan Shin EHS, Sugiarto HS, Liew HF, Wang X, Lew WS, Nguyen NT, Chen Y (2011) An efficient microfluidic sorter: implementation of double meandering micro striplines for magnetic particles switching. Microfluid Nanofluid 10(5):1069–1078

    Article  Google Scholar 

  • Krishnan JN, Kim C, Park HJ, Kang JY, Kim TS, Kim SK (2009) Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis. Electrophoresis 30(9):1457–1463

    Article  Google Scholar 

  • Lee H, Purdon AM, Westervelt RM (2004) Manipulation of biological cells using a microelectromagnet matrix. Appl Phys Lett 85(6):1063–1065

    Article  Google Scholar 

  • Lemoff AV, Lee AP (2000) Ac magnetohydrodynamic micropump. Sens Actuators B Chem 63(3):178–185

    Article  Google Scholar 

  • Lemoff AV, Lee AP (2003) An AC magnetohydrodynamic microfluidic switch for micro total analysis systems. Biomed Microdevices 5(1):55–60

    Article  Google Scholar 

  • Leventis N, Gao X (2001) Magnetohydrodynamic electrochemistry in the field of nd-fe-b magnets. theory, experiment, and application in self-powered flow delivery systems. Anal Chem 73(16):3981–3992

    Article  Google Scholar 

  • Li Q, Lian W, Sun H, Xuan Y (2008) Investigation on operational characteristics of a miniature automatic cooling device. Int J Heat Mass Transf 51(21–22):5033–5039

    Article  MATH  Google Scholar 

  • Lian W, Xuan Y, Li Q (2009) Design method of automatic energy transport devices based on the thermomagnetic effect of magnetic fluids. Int J Heat Mass Transf 52(23–24):5451–5458

    Article  MATH  Google Scholar 

  • Liu J, Lawrence EM, Wu A, Ivey ML, Flores GA, Javier K, Bibette J, Richard J (1995) Field-induced structures in ferrofluid emulsions. Phys Rev Lett 74(14):2828–2831

    Article  Google Scholar 

  • Liu J, Yap YF, Ng MY, Nguyen NT (2011) Numerical study of the formation process of ferrofluid droplets. Physics of Fluids 23(7):072008

    Google Scholar 

  • Liu J, Tan SH, Yap YF, Ng MY, Nguyen NT (2011) Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid Nanofluid 11(2):177–187

    Article  Google Scholar 

  • Love LJ, Jansen JF, McKnight TE, Roh Y, Phelps TJ (2004) A magnetocaloric pump for microfluidic applications. IEEE Trans Nanobiosci 3(2):101–110

    Article  Google Scholar 

  • Mao L, Koser H (2006) Towards ferrofluidics for μ-tas and lab on-a-chip applications. Nanotechnology 17(4):S34–S47

    Article  Google Scholar 

  • Mao L, Elborai S, He X, amd Zahn M, Koser H (2011) Direct observation of closed-loop ferrohydrodynamic pumping under traveling magnetic fields. Phys Rev B 84(10):104431

    Google Scholar 

  • Murshed SMS, Tan SH, Nguyen NT, abd Wong TN, Yobas L (2009) Microdroplet formation of water and nanofluids in heat-induced microfluidic t-junction. Micro Nanosyst 6(6):253–259

    Google Scholar 

  • Nguyen NT, Chai MF (2009) A stepper micropump for ferrofluid driven microfluidic systems. Micro Nanosyst 1(1):17–21

    Article  Google Scholar 

  • Nguyen B, Kassegne SK (2008) High-current density DC magenetohydrodynamics micropump with bubble isolation and release system. Microfluid Nanofluid 5(3):383–393

    Article  Google Scholar 

  • Nguyen NT, Ng KM, Huang X (2006) Manipulation of ferrofluid droplets using planar coils. Appl Phys Lett 89(5): 052509

    Google Scholar 

  • Nguyen NT, Ting TH, Yap YF, Wong TN, Chai JC, Ong WL, Zhou J, Tan SH, Yobas L (2007) Thermally mediated droplet formation in microchannels. Appl Phys Lett 91(8)

  • Nguyen NT, Zhu GP, Chua Y, Phan VN, Tan SH (2010) Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet. Langmuir 26(15):12553–12559

    Google Scholar 

  • Niu X, Zhang M, Wu J, Wen W, Sheng P (2009) Generation and manipulation of “smart” droplets. Soft Matter 5(3):576–581

    Article  Google Scholar 

  • Pal S, Datta A, Sen S, Mukhopdhyay A, Bandopadhyay K, Ganguly R (2011) Characterization of a ferrofluid-based thermomagnetic pump for microfluidic applications. J Magnet Magnet Mater (article in press)

  • Pamme N (2006) Magnetism and microfluidics. Lab on a Chip Miniaturisation Chem Biol 6(1):24–38

    Article  Google Scholar 

  • Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76(24):7250–7256

    Article  Google Scholar 

  • Pamme N, Eijkel JCT, Manz A (2006) On-chip free-flow magnetophoresis: separation and detection of mixtures of magnetic particles in continuous flow. J Magnet Magnet Mater 307(2):237–244

    Article  Google Scholar 

  • Plouffe BD, Lewis LH, Murthy SK (2011) Computational design optimization for microfluidic magnetophoresis. Biomicrofluidics 5(1):013413

    Google Scholar 

  • Probst R, Lin J, Komaee A, Nacev A, Cummins Z, Shapiro B (2011) Planar steering of a single ferrofluid drop by optimal minimum power dynamic feedback control of four electromagnets at a distance. J Magnet Magnet Mater 323(7)

  • Qian SZ, Bau HH (2009) Magneto-hydrodynamics based microfluidics. Mech Res Commun 36(1):382–399

    Google Scholar 

  • Rhodes S, Perez J, Elborai S, Lee S, Zahn M (2005) Ferrofluid spiral formations and continuous-to-discrete phase transitions under simultaneously applied DC axial and AC in-plane rotating magnetic fields. J Magnet Magnet Mater 289:353–355

    Article  Google Scholar 

  • Rong R, Choi JW, Ahn CH (2006) An on-chip magnetic bead separator for biocell sorting. J Micromech Microeng 16(12):2783–2790

    Article  Google Scholar 

  • Rosensweig RE (1997) Ferrohydrodynamics. Dover Publications

  • Siegel AC, Shevkoplyas SS, Weibel DB, Bruzewicz DA, Martinez AW, Whitesides GM (2006) Cofabrication of electromagnets and microfluidic systems in poly(dimethylsiloxane). Angewandte Chemie Int Ed 45(41):6877–6882

    Article  Google Scholar 

  • Siegel AC, Bruzewicz DA, Weibel DB, Whitesides GM (2007) Microsolidics: fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane). Adv Mater 19(5):727–733

    Article  Google Scholar 

  • Smistrup K, Kjeldsen BG, Reimers JL, Dufva M, Petersen J, Hansen MF (2005) On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator. Lab on a Chip Miniaturisation Chem Biol 5(11):1315–1319

    Article  Google Scholar 

  • Song SH, Lee HL, Min YH, Jung HI (2009) Electromagnetic microfluidic cell labeling device using on-chip microelectromagnet and multi-layered channels. Sens Actuators B Chem 141(1):210–216

    Article  Google Scholar 

  • Sun Y, Kwok YC, Nguyen NT (2007) A circular ferrofluid driven microchip for rapid polymerase chain reaction. Lab on a Chip Miniaturisation Chem Biol 7(8):1012–1017

    Article  Google Scholar 

  • Sun Y, Nguyen NT, Yien CK (2008) High-throughput polymerase chain reaction in parallel circular loops using magnetic actuation. Anal Chem 80(15):6127–6130

    Article  Google Scholar 

  • Sun Y, Kwok YC, Foo-Peng Lee P, Nguyen NT (2009) Rapid amplification of genetically modified organisms using a circular ferrofluid-driven PCR microchip. Anal Bioanal Chem 394(5):1505–1508

    Article  Google Scholar 

  • Suwa M, Watarai H (2011) Magnetoanalysis of micro/nanoparticles: a review. Anal Chim Acta 690(2):137–147

    Article  Google Scholar 

  • Tan SH, Nguyen NT (2011) Generation and manipulation of monodispersed ferrofluid emulsion: the effect of an uniform magnetic field in flow-focusing and t-junction configurations. Phys Rev E 84(3):036317

    Google Scholar 

  • Tan SH, Nguyen NT, Yobas L, Kang TG (2010) Formation and manipulation of ferrofluid droplets at a microfluidic t-junction. J Micromech Microeng 20(4):045004

    Google Scholar 

  • Tierno P, Golestanian R, Pagonabarraga I, Sagus F (2008a) Magnetically actuated colloidal microswimmers. J Phys Chem B 112(51):16525–16528

    Google Scholar 

  • Tierno P, Golestanian R, Pagonabarraga I, Sagus F (2008b) Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys Rev Lett 101(21)

  • Wang L, Zhang M, Li J, Gong X, Wen W (2010) Logic control of microfluidics with smart colloid. Lab Chip Miniaturisation Chem Biol 10(21):2869–2874

    Article  Google Scholar 

  • Watarai H, Namba M (2001) Magnetophoretic behavior of single polystyrene particles in aqueous manganese (II) chloride. Anal Sci 17(10):1233–1236

    Article  Google Scholar 

  • Weddemann A, Albon C, Auge A, Wittbracht F, Hedwig P, Akemeier D, Rott K, Meiner D, Jutzi P, Hntten A (2010) How to design magneto-based total analysis systems for biomedical applications. Biosens Bioelectron 26(4):1152–1163

    Article  Google Scholar 

  • West J, Gleeson JP, Alderman J, Collins JK, Berney H (2003) Structuring laminar flows using annular magnetohydrodynamic actuation. Sens Actuators B Chem 96(1-2):190–199

    Article  Google Scholar 

  • Weston MC, Gerner MD, Fritsch I (2010) Magnetic fields for fluid motion. Anal Chem 82(9):3411–3418

    Article  Google Scholar 

  • Wirix-Speetjens R, De Boeck J (2004) On-chip magnetic particle transport by alternating magnetic field gradients. IEEE Trans Magnet 40(4 I):1944–1946

    Article  Google Scholar 

  • Xuan Y, Lian W (2011) Electronic cooling using an automatic energy transport device based on thermomagnetic effect. Appl Therm Eng 31(8-9):1487–1494

    Article  Google Scholar 

  • Xue Y, Wang H, Zhao Y, Dai L, Feng L, Wang X, Lin T (2010) Magnetic liquid marbles: A “precise” miniature reactor. Adv Mater 22(43):1–5

    Article  Google Scholar 

  • Yamahata C, Chastellain M, Parashar VK, Petri A, Hofmann H, Gijs MAM (2005) Plastic micropump with ferrofluidic actuation. J Microelectromech Syst 14(1):96–102

    Article  Google Scholar 

  • Zhang M, Gong X, Wen W (2009) Manipulation of microfluidic droplets by electrorheological fluid. Electrophoresis 30(18):3116–3123

    Article  Google Scholar 

  • Zhang L, Abbott JJ, Dong L, Peyer KE, Kratochvil BE, Zhang H, Bergeles C, Nelson BJ (2009) Characterizing the swimming properties of artificial bacterial flagella. Nano Lett 9(10):3663–3667

    Article  Google Scholar 

  • Zhao Y, Fang J, Wang H, Wang X, Lin T (2010) Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv Mater 22(6):707–710

    Article  Google Scholar 

  • Zhong JH, Yi MQ, Bau HH (2002) Magneto hydrodynamic (MHD) pump fabricated with ceramic tapes. Sens Actuators A Phys 96(1):59–66

    Article  Google Scholar 

  • Zhou Q, Ristenpart WD, Stroeve P (2011) Magnetically induced decrease in droplet contact angle on nanostructured surfaces. Langmuir 27(19):11747–11751

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Trung Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, NT. Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12, 1–16 (2012). https://doi.org/10.1007/s10404-011-0903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0903-5

Keywords

Navigation