Skip to main content
Log in

Multifunctional wax valves for liquid handling and incubation on a microfluidic CD

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Recently, several biological assays have become available on the centrifugal microfluidic platform. Despite many innovative solutions developed for on-disc fluid handling for these assays, certain challenges, including liquid incubation and simplification of a multi-step assay on a plastic device, still need to be further addressed. Incubating fluids that require downstream processing, which we call “midstream incubation”, can often be difficult on the microfluidic disc platform due to surface tension changes induced by varying temperatures, thus causing operating instability. We describe here strategies for liquid reagent storage, release, incubation, and transfer, all of which utilize a single combination of actuation methods—wax valving and heat actuation by halogen lamp—on a centrifugal microfluidic device made using pristine materials. The strategies that we use to perform these steps, termed multifunctional wax valves, enable manipulation of a microlitre range fluid volume without the need for complex fabrication steps or hardware. This technology’s reliability and ease of use will hopefully allow for more powerful fluidics-based diagnostic tools to be created.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abi-Samra K, Clime L, Kong L et al (2011a) Thermo-pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluidics 11:643–652. doi:10.1007/s10404-011-0830-5

    Article  Google Scholar 

  • Abi-Samra K, Hanson R, Madou M, Gorkin RA (2011b) Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. Lab Chip 11:723–726. doi:10.1039/c0lc00160k

    Article  Google Scholar 

  • Amasia M, Cozzens M, Madou MJ (2012) Centrifugal microfluidic platform for rapid PCR amplification using integrated thermoelectric heating and ice-valving. Sens Actuators B Chem 161:1191–1197. doi:10.1016/j.snb.2011.11.080

    Article  Google Scholar 

  • Cho Y-K, Lee J-G, Park J-M et al (2007) One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7:565–573. doi:10.1039/b616115d

    Article  Google Scholar 

  • Ducrée J, Haeberle S, Lutz S et al (2007) The centrifugal microfluidic bio-disk platform. J Micromech Microeng 17:S103–S115. doi:10.1088/0960-1317/17/7/S07

    Article  Google Scholar 

  • Focke M, Stumpf F, Roth G et al (2010) Centrifugal microfluidic system for primary amplification and secondary real-time PCR. Lab Chip 10:3210–3212. doi:10.1039/c0lc00161a

    Article  Google Scholar 

  • Garcia-Cordero J, Benito-Lopez F, Diamond D, Ducree J, Ricco AJ (2009) Low-cost microfluidic single-use valves and on-board reagent storage using laser-printer technology. In: IEEE 22nd international conference on micro electro mechanical systems, pp 439–442. doi:10.1109/MEMSYS.2009.480541

  • Gorkin R, Clime L, Madou M, Kido H (2010a) Pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluidics 9:541–549. doi:10.1007/s10404-010-0571-x

    Article  Google Scholar 

  • Gorkin R, Park J, Siegrist J et al (2010b) Centrifugal microfluidics for biomedical applications. Lab Chip 10:1758–1773. doi:10.1039/b924109d

    Article  Google Scholar 

  • Gorkin R, Soroori S, Southard W et al (2011) Suction-enhanced siphon valves for centrifugal microfluidic platforms. Microfluid Nanofluidics 12:345–354. doi:10.1007/s10404-011-0878-2

    Article  Google Scholar 

  • Gorkin R, Nwankire CE, Gaughran J et al (2012) Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12:2894–2902. doi:10.1039/c2lc20973j

    Article  Google Scholar 

  • Hébert B, Bergeron J, Potworowski EF, Tijssen P (1993) Increased PCR sensitivity by using paraffin wax as a reaction mix overlay. Mol Cell Probes 7:249–252. doi:10.1006/mcpr.1993.1036

    Article  Google Scholar 

  • Hoffmann J, Mark D, Lutz S et al (2010) Pre-storage of liquid reagents in glass ampoules for DNA extraction on a fully integrated lab-on-a-chip cartridge. Lab Chip 10:1480–1484. doi:10.1039/b926139g

    Article  Google Scholar 

  • Hou H-H, Wang Y-N, Chang C-L et al (2011) Rapid glucose concentration detection utilizing disposable integrated microfluidic chip. Microfluid Nanofluidics 11:479–487. doi:10.1007/s10404-011-0813-6

    Article  Google Scholar 

  • Kido H, Micic M, Smith D et al (2007) A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization. Colloids Surf B Biointerfaces 58:44–51. doi:10.1016/j.colsurfb.2007.03.015

    Article  Google Scholar 

  • Kong L, Rodriguez JM, Perebikovsky A et al (2013) Novel heating and cooling techniques on a centrifugal fluidic platform for polymerase chain reaction. Microtechnol Med Biol

  • Lutz S, Weber P, Focke M et al (2010) Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10:887–893. doi:10.1039/b921140c

    Article  Google Scholar 

  • Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC Press, Boca Raton, p 493

    Google Scholar 

  • Madou M, Zoval J, Jia G et al (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628. doi:10.1146/annurev.bioeng.8.061505.095758

    Article  Google Scholar 

  • Malmstadt N, Hoffman AS, Stayton PS (2004) “Smart” mobile affinity matrix for microfluidic immunoassays. Lab Chip 4:412–415. doi:10.1039/b315394k

    Article  Google Scholar 

  • Miralles V, Huerre A, Malloggi F, Jullien M-C (2013) A review of heating and temperature control in microfluidic systems: techniques and applications. Diagnostics 3:33–67. doi:10.3390/diagnostics3010033

    Article  Google Scholar 

  • Noroozi Z, Kido H, Madou MJ (2011a) Electrolysis-induced pneumatic pressure for control of liquids in a centrifugal system. J Electrochem Soc 158:P130. doi:10.1149/2.028111jes

    Article  Google Scholar 

  • Noroozi Z, Kido H, Peytavi R et al (2011b) A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics. Rev Sci Instrum 82:064303. doi:10.1063/1.3597578

    Article  Google Scholar 

  • Nwankire CE, Chan D-SS, Gaughran J et al (2013) Fluidic automation of nitrate and nitrite bioassays in whole blood by dissolvable-film based centrifugo-pneumatic actuation. Sensors (Basel) 13:11336–11349. doi:10.3390/s130911336

    Article  Google Scholar 

  • Sagar DM, Aoudjane S, Gaudet M et al (2013) Optically induced thermal gradients for protein characterization in nanolitre-scale samples in microfluidic devices. Sci Rep 3:1–6. doi:10.1038/srep02130

    Article  Google Scholar 

  • Siegrist J, Gorkin R, Clime L et al (2010) Serial siphon valving for centrifugal microfluidic platforms. Microfluid Nanofluidics 9:55–63. doi:10.1007/s10404-009-0523-5

    Article  Google Scholar 

  • Soroori S, Kulinsky L, Madou M (2013) Centrifugal microfluidics: characteristics & possibilities. In: Chakraborty S (ed) Microfluidics and microscale transport processes, pp 149–186. CRC Press, USA

  • Sundberg SO, Wittwer CT, Gao C, Gale BK (2010) Spinning disk platform for microfluidic digital polymerase chain reaction. Anal Chem 82:1546–1550. doi:10.1021/ac902398c

    Article  Google Scholar 

  • Van Oordt T, Barb Y, Zengerle R, Von Stetten F (2011) Miniature stick-packaging—an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems. MicroTAS, pp 437–439

  • Wainwright LA, Seifert HS (1993) Paraffin beads can replace mineral oil as an evaporation barrier in PCR. Biotechniques 14:34–36

    Google Scholar 

  • Zhang C, Xing D (2007) Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res 35:4223–4237. doi:10.1093/nar/gkm389

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Genome Quebec and the National Institute of Health (Grant 1 R01 AI089541-01). The authors would also like to acknowledge Bryce Kubo and Jigar Shah for their contribution to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Madou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 44202 kb)

Supplementary material 2 (PDF 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L.X., Parate, K., Abi-Samra, K. et al. Multifunctional wax valves for liquid handling and incubation on a microfluidic CD. Microfluid Nanofluid 18, 1031–1037 (2015). https://doi.org/10.1007/s10404-014-1492-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1492-x

Keywords

Navigation