Skip to main content
Log in

Thermo-pneumatic pumping in centrifugal microfluidic platforms

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The pumping of fluids in microfluidic discs by centrifugal forces has several advantages, however, centrifugal pumping only permits unidirectional fluid flow, restricting the number of processing steps that can be integrated before fluids reach the edge of the disc. As a solution to this critical limitation, we present a novel pumping technique for the centrifugal microfluidic disc platform, termed the thermo-pneumatic pump (TPP), that enables fluids to be transferred the center of a rotating disc by the thermal expansion of air. The TPP is easy to fabricate as it is a structural feature with no moving components and thermal energy is delivered to the pump via peripheral infrared (IR) equipment, enabling pumping while the disc is in rotation. In this report, an analytical model for the operation of the TPP is presented and experimentally validated. We demonstrate that the experimental behavior of the pump agrees well with theory and that flow rates can be controlled by changing how well the pump absorbs IR energy. Overall, the TPP enables for fluids to be stored near the edge of the disc and transferred to the center on demand, offering significant advantages to the microfluidic disc platform in terms of the handling and storage of liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abi-Samra K, Hanson R, Madou M, Gorkin RA III (2011) Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. Lab Chip 11(4):723–726. doi:10.1039/c0lc00160k

    Article  Google Scholar 

  • Cho YK, Lee JG, Park JM, Lee BS, Lee Y, Ko C (2007) One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7(5):565–573. doi:10.1039/B616115D

    Article  Google Scholar 

  • Ducrée J, Haeberle S, Lutz S, Pausch S, Stetten FV, Zengerle R (2007) The centrifugal microfluidic Bio-Disk platform. J Micromech Microeng 17(7):S103–S115. doi:10.1088/0960-1317/17/7/S07

    Article  Google Scholar 

  • Garcia-Cordero JL, Barrett LM, Kennedy RO, Ricco AJ (2010a) Microfluidic sedimentation cytometer for milk quality and bovine mastitis monitoring. Biomed Microdevices 12(6):1051–1059. doi:10.1007/s10544-010-9459-5

    Article  Google Scholar 

  • Garcia-Cordero JL, Basabe-Desmonts L, Ducrée J, Ricco AJ (2010b) Liquid recirculation in microfluidic channels by the interplay of capillary and centrifugal forces. Microfluid Nanofluid 9(4):695–703. doi:10.1007/s10404-010-0585-4

    Article  Google Scholar 

  • Garcia-Cordero JL, Kurzbuch D, Benito-Lopez F, Diamond D, Lee LP, Ricco AJ (2010c) Optically addressable single-use microfluidic valves by laser printer lithography. Lab Chip 10(20):2680–2687. doi:10.1039/c004980h

    Article  Google Scholar 

  • Gorkin R, Park J, Siegrist J, Amasia M, Lee S, Park JM, Kim J, Kim H, Madou M, Cho YK (2010a) Centrifugal microfluidics for biomedical applications. Lab Chip 10(14):1758–1773. doi:10.1039/b924109d

    Article  Google Scholar 

  • Gorkin R, Clime L, Madou M, Kido H (2010b) Pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluid 9(2):541–549. doi:10.1007/s10404-010-0571-x

    Article  Google Scholar 

  • Ha SM, Cho W, Ahn Y (2009) Disposable thermo-pneumatic micropump for bio lab-on-a-chip application. Microelectron Eng 86(4–6):1337–1339. doi:10.1016/j.mee.2008.12.046

    Article  Google Scholar 

  • Haeberle S, Brenner T, Zengerle R, Ducrée J (2006) Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip 6(6):776–781. doi:10.1039/b604145k

    Article  Google Scholar 

  • Handique K, Burke DT, Mastrangelo CH, Burns MA (2001) On-chip thermopneumatic pressure for discrete drop pumping. Anal Chem 73(8):1831–1838

    Article  Google Scholar 

  • Kim J, Kido H, Rangel RH, Madou M (2008) Passive flow switching valves on a centrifugal microfluidic platform. Sens Actuators B 128(2):613–621. doi:10.1016/j.snb.2007.07.079

    Article  Google Scholar 

  • Kong MCR, Salin ED (2010) Pneumatically pumping fluids radially inward on centrifugal microfluidic platforms in motion. Anal Chem 82(19):8039–8041. doi:10.1021/ac102071b

    Article  Google Scholar 

  • Lee BS, Lee YU, Kim HS, Kim TH, Park J, Lee JG, Kim J, Kim H, Lee WG, Cho YK (2011) Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood. Lab Chip 11(1):70–78. doi:10.1039/c0lc00205d

    Article  Google Scholar 

  • Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8(1):601–628. doi:10.1146/annurev.bioeng.8.061505.095758

    Article  Google Scholar 

  • Noroozi Z, Kido H, Micic M, Pan H, Bartolome C, Princevac M, Zoval J, Madou M (2009) Reciprocating flow-based centrifugal microfluidics mixer. Rev Sci Instrum 80(7):075102. doi:10.1063/1.3169508

    Article  Google Scholar 

  • Siegrist J, Amasia M, Singh N, Banerjee D, Madou M (2010a) Numerical modeling and experimental validation of uniform microchamber filling in centrifugal microfluidics. Lab Chip 10(7):876–886. doi:10.1039/b917880e

    Article  Google Scholar 

  • Siegrist J, Gorkin R, Clime L, Roy E, Peytavi R, Kido H, Bergeron M, Veres T, Madou M (2010b) Serial siphon valving for centrifugal microfluidic platforms. Microfluid Nanofluid 9(1):55–63. doi:10.1007/s10404-009-0523-5

    Article  Google Scholar 

  • Song WH, Lichtenberg J (2005) Thermo-pneumatic, single-stroke micropump. J Micromech Microeng 15(8):1425–1432. doi:10.1088/0960-1317/15/8/007

    Article  Google Scholar 

  • Steigert J, Grumann M, Brenner T, Riegger L, Harter J, Zengerle R, Ducrée J (2006) Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab Chip 6(8):1040–1044. doi:10.1039/b607051p

    Article  Google Scholar 

  • Xi Y, Duford DA, Salin ED (2010) Automated liquid-solid extraction of pyrene from soil on centrifugal microfluidic devices. Talanta 82(3):1072–1076. doi:10.1016/j.talanta.2010.06.007

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the WCU (World Class University) program (R32-2008-000-20054-0) and Genome Québec for funding of the presented research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Madou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abi-Samra, K., Clime, L., Kong, L. et al. Thermo-pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluid 11, 643–652 (2011). https://doi.org/10.1007/s10404-011-0830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0830-5

Keywords

Navigation