Skip to main content
Log in

Single-use thermoplastic microfluidic burst valves enabling on-chip reagent storage

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A simple and reliable method for fabricating single-use normally closed burst valves in thermoplastic microfluidic devices is presented, using a process flow that is readily integrated into established workflows for the fabrication of thermoplastic microfluidics. An experimental study of valve performance reveals the relationships between valve geometry and burst pressure. The technology is demonstrated in a device employing multiple valves engineered to actuate at different inlet pressures that can be generated using integrated screw pumps. On-chip storage and reconstitution of fluorescein salt sealed within defined reagent chambers are demonstrated. By taking advantage of the low gas and water permeability of cyclic olefin copolymer, the robust burst valves allow on-chip hermetic storage of reagents, making the technology well suited for the development of integrated and disposable assays for use at the point of care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilera-Herrador EE, Cruz-Vera MM, Valcárcel MM (2010) Analytical connotations of point-of-care testing. Analyst 135:2220–2232. doi:10.1039/c0an00307g

    Article  Google Scholar 

  • Beebe DJ, Moore JS, Bauer JM et al (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590. doi:10.1038/35007047

    Article  Google Scholar 

  • Blazej RG, Kumaresan P, Mathies RA (2006) Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. Proc Natl Acad Sci USA 103:7240–7245. doi:10.1073/pnas.0602476103

    Article  Google Scholar 

  • Chang LL, Pikal MJ (2009) Mechanisms of protein stabilization in the solid state. J Pharm Sci 98:2886–2908. doi:10.1002/jps.21825

    Article  Google Scholar 

  • Chen G, Svec F, Knapp DR (2008) Light-actuated high pressure-resisting microvalve for on-chip flow control based on thermo-responsive nanostructured polymer. Lab Chip 8:1198–1204. doi:10.1039/b803293a

    Article  Google Scholar 

  • Chen C-F, Liu J, Chang C-C, DeVoe DL (2009a) High-pressure on-chip mechanical valves for thermoplastic microfluidic devices. Lab Chip 9:3511. doi:10.1039/b912014a

    Article  Google Scholar 

  • Chen CF, Liu J, Hromada LP et al (2009b) High-pressure needle interface for thermoplastic microfluidics. Lab Chip 9:50. doi:10.1039/b812812j

    Article  Google Scholar 

  • Cleland JL, Lam X, Kendrick B, Yang J (2001) A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J Pharm Sci 90(3):310–321

  • Garcia-Cordero JL, Kurzbuch D, Benito-Lopez F et al (2010) Optically addressable single-use microfluidic valves by laser printer lithography. Lab Chip 10:2680. doi:10.1039/c004980h

    Article  Google Scholar 

  • Gervais L, de Rooij N, Delamarche E (2011) Microfluidic diagnostic devices: microfluidic chips for point-of-care immunodiagnostics (Adv. Mater. 24/2011). Adv Mater 23:H208–H208. doi:10.1002/adma.201190098

    Article  Google Scholar 

  • Gorkin R, Park J, Siegrist J et al (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10:1758. doi:10.1039/b924109d

    Article  Google Scholar 

  • Grover WH, Ivester RHC, Jensen EC, Mathies RA (2006) Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab Chip 6:623–631. doi:10.1039/b518362f

    Article  Google Scholar 

  • Hoffmann J, Mark D, Lutz S et al (2010) Pre-storage of liquid reagents in glass ampoules for DNA extraction on a fully integrated lab-on-a-chip cartridge. Lab Chip 10:1480. doi:10.1039/b926139g

    Article  Google Scholar 

  • Hosokawa K, Maeda R (2000) A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique. J Micromech Microeng 10:415–420. doi: 10.1088/0960-1317/10/3/317

  • Kuo C-H, Wang J-H, Lee G-B (2009) A microfabricated CE chip for DNA pre-concentration and separation utilizing a normally closed valve. Electrophoresis 30:3228–3235. doi:10.1002/elps.200900112

    Article  Google Scholar 

  • Liu RH, Bonanno J, Yang J, Lenigk R (2004) Single-use, thermally actuated paraffin valves for microfluidic applications. JMEMS. doi:10.1016/j.snb.2003.09.037

    Google Scholar 

  • Luo Q, Mutlu S, Gianchandani YB et al (2003) Monolithic valves for microfluidic chips based on thermoresponsive polymer gels. Electrophoresis 24:3694–3702. doi:10.1002/elps.200305577

    Article  Google Scholar 

  • Madou M, Zoval J, Jia G et al (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628. doi:10.1146/annurev.bioeng.8.061505.095758

    Article  Google Scholar 

  • Meyer JD, Nayar R, Manning MC (2009) Impact of bulking agents on the stability of a lyophilized monoclonal antibody. Eur J Pharm Sci 38:29–38. doi:10.1016/j.ejps.2009.05.008

    Article  Google Scholar 

  • Mosadegh B, Mosadegh B, Tavana H et al (2011) High-density fabrication of normally closed microfluidic valves by patterned deactivation of oxidized polydimethylsiloxane. Lab Chip 11:738–742. doi:10.1039/C0LC00112K

    Article  Google Scholar 

  • Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16:R13–R39. doi:10.1088/0960-1317/16/5/R01

    Article  Google Scholar 

  • Park J-M, Cho Y-K, Lee BS et al (2007) Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices. Lab Chip 7:557–564. doi:10.1039/b616112j

    Article  Google Scholar 

  • Rahmanian O, DeVoe DL (2013) Pen microfluidics: rapid desktop manufacturing of sealed thermoplastic microchannels. Lab Chip 13:1102–1108. doi:10.1039/C2LC41057E

    Article  Google Scholar 

  • Rahmanian O, Chen C-F, DeVoe DL (2012) Microscale patterning of thermoplastic polymer surfaces by selective solvent swelling. Langmuir 28:12923–12929. doi:10.1021/la302704t

    Article  Google Scholar 

  • Ramachandran S, Fu E, Lutz B, Yager P (2014) Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices. Analyst 139:1456–1462. doi:10.1039/c3an02296j

    Article  Google Scholar 

  • Tsao C-W, DeVoe D (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluidics 6:1–16. doi:10.1007/s10404-008-0361-x

    Article  Google Scholar 

  • Tsao CW, Hromada L, Liu J et al (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7:499–505. doi:10.1039/b618901f

    Article  Google Scholar 

  • van Oordt T, Barb Y, Smetana J et al (2013) Miniature stick-packaging—an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems. Lab Chip 13:2888. doi:10.1039/c3lc50404b

    Article  Google Scholar 

  • Yang Y-N, Hsiung S-K, Lee G-B (2009) A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure. Microfluid Nanofluidics 6:823–833. doi:10.1007/s10404-008-0356-7

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the National Institutes of Health through NIH grant R01AI096215, and through research fellowship support from the ARCS Foundation, Metropolitan Washington Chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don L. DeVoe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmanian, O.D., DeVoe, D.L. Single-use thermoplastic microfluidic burst valves enabling on-chip reagent storage. Microfluid Nanofluid 18, 1045–1053 (2015). https://doi.org/10.1007/s10404-014-1494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1494-8

Keywords

Navigation