Skip to main content
Log in

A review on slip models for gas microflows

  • Review Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Accurate modeling of gas microflow is crucial for the microfluidic devices in MEMS. Gas microflows through these devices are often in the slip and transition flow regimes, characterized by the Knudsen number of the order of 10−2~100. An increasing number of researchers now dedicate great attention to the developments in the modeling of non-equilibrium boundary conditions in the gas microflows, concentrating on the slip model. In this review, we present various slip models obtained from different theoretical, computational and experimental studies for gas microflows. Correct descriptions of the Knudsen layer effect are of critical importance in modeling and designing of gas microflow systems and in predicting their performances. Theoretical descriptions of the gas-surface interaction and gas-surface molecular interaction models are introduced to describe the boundary conditions. Various methods and techniques for determination of the slip coefficients are reviewed. The review presents the considerable success in the implementation of various slip boundary conditions to extend the Navier–Stokes (N–S) equations into the slip and transition flow regimes. Comparisons of different values and formulations of the first- and second-order slip coefficients and models reveal the discrepancies arising from different definitions in the first-order slip coefficient and various approaches to determine the second-order slip coefficient. In addition, no consensus has been reached on the correct and generalized form of higher-order slip expression. The influences of specific effects, such as effective mean free path of the gas molecules and viscosity, surface roughness, gas composition and tangential momentum accommodation coefficient, on the hybrid slip models for gas microflows are analyzed and discussed. It shows that although the various hybrid slip models are proposed from different viewpoints, they can contribute to N–S equations for capturing the high Knudsen number effects in the slip and transition flow regimes. Future studies are also discussed for improving the understanding of gas microflows and enabling us to exactly predict and actively control gas slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AB:

Augmented Burnett

MD:

Molecular dynamics

BE:

Boltzmann equation

MEMS:

Microelectromechanical systems

CL:

Cercignani–Lampis

MFP:

Mean free path

HS:

Hard sphere

N–S:

Navier–Stokes

LBE:

Linearized Boltzmann equation

N–S–F:

Navier–Stokes–Fourier

LBM:

Lattice Boltzmann method

QGD:

Quasi-gas dynamic

BGK:

Bhatnagar Gross Krook

TMAC:

Tangential momentum accommodation coefficient

DSMC:

Direct Simulation Monte Carlo

VHS:

Variable hard sphere

IP:

Information preservation

VSS:

Variable soft sphere

KL:

Knudsen layer

W–M:

Weierstrass–Mandelbrot

a D, \( C_{\text{D}} \) :

Constant with positive values

\( nn \) :

Exponent constant

\( a_{{{\text{R}}1}} \), \( a_{{{\text{R}}2}} \) :

Various coefficients

\( N_{\text{a}} \) :

Total number of gas atoms

\( A_{\text{R}} \), \( D_{\text{R}} \), \( E_{\text{R}} \) :

Curve-fitting coefficients

\( N_{\text{K}} \) :

Index of the fluid lattices

\( b \) :

Channel thickness

p :

Pressure

\( b_{\text{BK}} \) :

Generalized slip coefficient

\( P_{\text{m}} \) :

Average pressure

\( c_{\text{m}} \) :

Most probable speed

\( P_{\text{O}} \) :

Outlet pressure

\( \bar{c} \) :

Thermal speed of the gas

\( P_{\text{r}} \) :

Prandtl number

\( C_{0} \) :

Molar concentration

\( \vec{q} \) :

Heat flux

\( C_{1} \), C 2 :

First and second order slip coefficients

Q N :

Non-dimensional flow rate

C F :

Correction factor

Q v :

Volumetric flow rate

C L :

Variable parameter

r :

Traveling distance

C p, r q :

Constants

\( r_{\text{K}} \) :

Fraction of gas particles

\( C_{{\tilde{y}}} \) :

Variable parameter

\( R_{1} \), \( R_{2} \) :

Inner and outer radius

\( C_{\text{Z}} \) :

Variable \( \xi_{\text{s}} /\lambda \)(\( C_{\text{Z}} \in [0,1] \))

\( R_{\text{a}} \) :

Average roughness

\( d \) :

Mean molecular diameter

\( Re \) :

Reynolds number

\( d_{\text{c}} \) :

Collision molecular diameter

\( R_{\text{P}} \) :

Specific gas constant

\( f \) :

Roughness height function

\( S \) :

Slip coefficient function

\( f_{\text{B}} \) :

Distribution function

\( S_{\text{uy}} \), \( S_{\text{yy}} \) :

Relative position and velocity parameters

\( h_{\text{B}} \) :

Small perturbation;

\( T \) :

Absolute temperature

\( H \) :

Film thickness

T r :

Torque

I :

Velocity defect function

u :

Velocity

k B :

Boltzmann constant

\( \tilde{u} \) :

Velocity ratio \( \tilde{u} = u/\alpha_{\text{p}} \lambda \)

\( K_{\text{M}} \) :

Variable parameter

\( u_{\text{n}} \) :

Velocity normal to the wall

\( Kn \) :

Knudsen number

\( u_{{{\text{N}}1}} \), \( u_{{{\text{N}}2}} \) :

Velocity components

\( Kn_{\text{O}} \) :

Knudsen number outlet

\( u_{\text{s}} \) :

Slip velocity

k s1k s4 :

Constants

\( \vec{u}_{\text{s}} \) :

Tangential slip velocity

\( k_{\text{u}} \) :

Velocity gradient

\( u_{\text{w}} \) :

Wall velocity

\( l_{\text{c}} \) :

Knudsen layer thickness

\( u_{\lambda } \) :

Tangential velocity component

\( L \) :

Channel length

\( U_{\text{g}} \) :

Gas flow velocity

\( L_{0} \) :

Characteristic length

\( U_{\text{s}} \) :

Non-dimensional slip velocity

\( L_{\text{c}} \) :

Local characteristic length

\( U_{\text{w}} \) :

Non-dimensional wall velocity

\( L_{\text{r}} \) :

Inner cylinder length

\( v_{0} \) :

Mixture velocity

\( L_{\text{s}} \) :

Slip length

\( v_{\text{g}} \) :

Kinematic viscosity

\( L_{\text{x}} \) :

Width of the cell

\( V_{{{\text{g}}1}} \), \( V_{{{\text{g}}2}} \) :

Fraction of components

\( m \) :

Molecular mass

\( V_{\text{t}} \) :

Particle information velocity

\( m_{1} \), \( m_{2} \) :

Molecular mass of species

\( w \) :

Channel width

\( Ma \) :

Mach number

\( x_{t} \) :

Coordinate tangential to the wall

\( n \) :

Coordinate normal to the wall

\( y \) :

Distance normal to the wall

\( n_{01} \), \( n_{02} \) :

Equilibrium number densities

\( \tilde{y} \) :

Relative variable \( \tilde{y} = y/\lambda \)

\( n_{\text{g}} \) :

Number density of the gas

α AC1, α AC2 :

Ratio coefficients

σ v :

Tangential momentum accommodation coefficient

α K :

Adjustable coefficient

ωm, ωG :

Constants

α M :

Fraction parameter

ω M :

Interaction parameter

α p :

Applied parameter

ω r :

Angle velocity

α s :

Controversial coefficient

\( \vartheta_{\text{m}} \) :

Variable coefficient

β M :

Interaction parameter

μ :

Gas viscosity (12)

β T :

Difference constant

μ f :

First-order approximation

θ P, \( \beta_{\text{P}} \) :

Random variables

\( \chi_{\text{M}} \) :

Parameter \( \chi_{\text{M}} = n_{02} m_{2} /(n_{01} m_{1} ) \)

δ :

Mean molecular spacing

ξs :

Distance

\( \delta_{{\tilde{y}}} \) :

Variable parameter

\( \upsilon \) :

Collision frequency

ρ :

Gas density

τ g :

Relaxation time

λ :

Mean free path

τ N :

Shear stress

λ 1, λ 2 :

MFP of the binary gas mixtures

τ w :

Wall shear stress

λ s, λ b :

MFP from molecular and boundary scatterings

\( \vec{\tau } \) :

Tangential shear stress

γ:

Ratio of specific heats

\( \Upphi_{0} \) :

Quantity (gas density, pressure or temperature)

γT :

Molecular acceleration

\( \Upphi \) :

Function of Knudsen number

σ :

Standard deviation

\( \Uptheta \) :

Probability density

σ 22, σ 25, σ 55 :

TMAC Coefficients

ψ:

Probability distribution function

σ L0, σ L1, σ L2 :

Variable parameters

\( \Uppi \) :

Pressure ratio

σ n :

Energy accommodation coefficient

ΔP :

Pressure drop

σ p :

Slip coefficient

ΔU :

Velocity drop

σ T :

Thermal accommodation coefficient

1st:

First-order

M:

Maxwell model

2nd:

Second-order

S:

Sharipov model

L:

Loyalka model

c:

DSMC cell

NS:

Navier–Stokes

eff:

Effective relations

r:

Reflected gas molecule

i:

Incident gas molecules

ref:

Reference conditions

in, fin:

Initial and final values

s:

Slip boundary condition

IP:

Information preservation

sm:

Smooth surface

j :

The order of the polynomial

S:

Solid wall

l:

Lower plate

u:

Upper plate

Loc:

Local value

References

  • Agrawal A, Prabhu SV (2008a) Deduction of slip coefficient in slip and transition regimes from existing cylindrical Couette flow data. Exp Therm Fluid Sci 32:991–996

    Article  Google Scholar 

  • Agrawal A, Prabhu SV (2008b) Survey on measurement of tangential momentum accommodation coefficient. J Vac Sci Technol A 26:634–645

    Article  Google Scholar 

  • Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for complex flows. Annu Rev Fluid Mech 42:439–472

    Article  MathSciNet  Google Scholar 

  • Albertoni S, Cercignani C, Gotusso L (1963) Numerical evaluation of the slip coefficient. Phys Fluid 6:993–996

    Article  Google Scholar 

  • Alexander FJ, Garcia AL, Alder BJ (1998) Cell size dependence of transport coefficients in stochastic particle algorithms. Phys Fluid 10:1540–1542

    Article  Google Scholar 

  • Almqvist A, Lukkassen D, Meidell A, Wall P (2007) New concepts of homogenization applied in rough surface hydrodynamic lubrication. Int J Eng Sci 45:139–154

    Article  MathSciNet  MATH  Google Scholar 

  • Ansumali S, Karlin IV, Arcidiacono S, Abbas A, Prasianakis N (2007) Hydrodynamics beyond Navier–Stokes: exact solution to the Lattice Boltzmann hierarchy. Phys Rev Lett 98:124502

    Article  Google Scholar 

  • Arkilic EB, Schmidt MA, Breuer KS (1997) Gaseous slip flow in microchannels. J Microelectromech Syst 6:167–174

    Article  Google Scholar 

  • Arkilic EB, Breuer KS, Schmidt MA (2001) Mass flow and tangential momentum accommodation in silicon micromachined channels. J Fluid Mech 437:29–43

    Article  MATH  Google Scholar 

  • Arlemark EJ, Dadzie SK, Reese JM (2010) An extension to the Navier-Stokes equations to incorporate gas molecular collisions with boundaries. ASME J Heat Transf 132:041006

    Article  Google Scholar 

  • Ascroft NW, Mermin ND (1976) Solid state physics. Saunders College press, Philadelphia

    Google Scholar 

  • Asproulis N, Drikakis D (2010) Surface roughness effects in micro and nanofluidic devices. J Comput Theoret Nanosci 7:1825–1830

    Article  Google Scholar 

  • Aubert C, Colin S (2001) High-order boundary conditions for gaseous flows in rectangular microducts. Microscale Thermophys Eng 5:41–54

    Article  Google Scholar 

  • Badur J, Karcz M, Lemanski M (2011) On the mass and momentum transport in the Navier–Stokes slip layer. Microfluid Nanofluid 11:439–449

    Article  Google Scholar 

  • Bahrami M, Yovanovich MM, Culham JR (2006) Pressure drop of fully developed laminar flow in rough microtubes. ASME J Fluid Eng 128:632–637

    Article  Google Scholar 

  • Bahukudumbi P, Beskok A (2003) A phenomenological lubrication model for the entire Knudsen regime. J Micromech Microeng 13:873–884

    Article  Google Scholar 

  • Bahukudumbi P, Park JH, Beskok A (2003) A unified engineering model for steady and quasi-steady shear-driven gas microflows. Microscale Thermophys Eng 7:291–315

    Article  Google Scholar 

  • Balakrishnan R (2004) An approach to entropy consistency in second-order hydrodynamic equations. J Fluid Mech 503:201–245

    Article  MathSciNet  MATH  Google Scholar 

  • Barber RW, Emerson DR (2002) Numerical simulation of low Reynolds number slip flow past a confined sphere. In: 23rd international symposium on rarefied gas dynamics, Whistler, Canada, Daresbury Laboratory, Daresbury, Warrington, England

  • Barber RW, Emerson DR (2006) Challenges in modeling gas-phase flow in microchannels: from slip to transition. Heat Transf Eng 27:3–12

    Article  Google Scholar 

  • Barber RW, Sun Y, Gu XJ, Emerson DR (2004) Isothermal slip flow over curved surfaces. Vaccum 76:73–81

    Article  Google Scholar 

  • Barisik M, Beskok A (2011) Molecular dynamics simulations of shear-driven gas flows in nano-channels. Microfluid Nanofluid 11:611–622

    Article  Google Scholar 

  • Baviere R, Gamrat G, Favre-Marinet M, Le Person S (2006) Modelling of laminar flows in rough-wall microchannels. ASME J Fluids Eng 128:734–741

    Article  Google Scholar 

  • Beskok A (2001) Validation of a new velocity-slip model for separated gas microflows. Num Heat Transfer Part B 40:451–471

    Article  Google Scholar 

  • Beskok A, Karniadakis GE (1994) Simulation of heat and momentum transfer in complex microgeometries. J Thermophys Heat Transf 8:647–655

    Article  Google Scholar 

  • Beskok A, Karniadakis GE (1996) Rarefaction and compressibility effects in gas microflows. J Fluid Eng 118:448–456

    Article  Google Scholar 

  • Beskok A, Karniadakis GE (1999) A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys Eng 3:43–77

    Article  Google Scholar 

  • Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford

    Google Scholar 

  • Blanchard D, Ligrani P (2007) Slip and accommodation coefficients from rarefaction and roughness in rotating microscale disk flows. Phys Fluid 19:063602

    Article  Google Scholar 

  • Bora CK, Flater EE, Street MD, Redmond JM, Starr MJ, Carpick RW, Plesha ME (2005) Multiscale roughness and modeling of MEMS interfaces. Tribol Lett 19:37–48

    Article  Google Scholar 

  • Brenner H (2011) Beyond the no-slip boundary condition. Phys Rev E 84:046309

    Article  Google Scholar 

  • Buscaglia GC, Jai M (2004) Homogenization of the generalized Reynolds equation for ultra-thin gas film and its resolution by FEM. ASME J Tribol 126:547–552

    Article  Google Scholar 

  • Cao BY, Chen M, Guo ZY (2005) Temperature dependence of the tangential momentum accommodation coefficient for gases. Appl Phys Lett 86:091905

    Article  Google Scholar 

  • Cao BY, Chen M, Guo ZY (2006) Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation. Inter J Eng Sci 44:927–937

    Article  Google Scholar 

  • Cao BY, Sun J, Chen M, Guo ZY (2009) Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: a review. Int J Mol Sci 10:4638–4706

    Article  Google Scholar 

  • Cercignani C (1969) A variational principle for boundary value problems in kinetic theory. J Stat Phys 1:297–311

    Article  Google Scholar 

  • Cercignani C (1975) Theory and application of the Boltzmann equation. Scottish Academic Press, Edinburgh

    MATH  Google Scholar 

  • Cercignani C (1988) The Boltzmann equation and its applications. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Cercignani C (1990) Mathematical methods in kinetic theory. Plenum, New York

    MATH  Google Scholar 

  • Cercignani C (2000) Rarefied gas dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Cercignani C, Lampis M (1971) Kinetic model for gas-surface interaction. Transp Theory Stat Phys 1:101–114

    Article  MathSciNet  MATH  Google Scholar 

  • Cercignani C, Lampis M (1989) Variational calculation of the slip coefficient and the temperature jump for arbitrary gas-surface interactions. In: Rarefied gas dynamics: space related studies, American Institute of Aeronautics and Astronautics, Washington, pp 553–561

  • Cercignani C, Lorenzani S (2010) Variational derivation of second-order slip coefficients on the basis of the Boltzmann equation for hard-sphere molecules. Phys Fluids 22:062004

    Article  Google Scholar 

  • Chabloz M, Sasaki Y, Matsuura T, Tsutsumi K (2000) Improvement of sidewall roughness in deep silicon etching. Microsyst Technol 6:86–89

    Article  Google Scholar 

  • Chapman S, Cowling TG (1970) The mathematical theory of nonuniform gases, 3rd edn. Cambridge University Press, New York

    Google Scholar 

  • Chen D, Bogy DB (2010) Comparisons of slip-corrected Reynolds lubrication equations for the air bearing film in the head-disk interface of hard disk drives. Tribol Lett 37:191–201

    Article  Google Scholar 

  • Chen Y, Cheng P (2003) Fractal characterization of wall roughness on pressure drop in microchannels. Int Commun Heat Mass Transf 30:1–11

    Article  Google Scholar 

  • Chen S, Tian Z (2010) Simulation of thermal micro-flow using lattice Boltzmann method with Langmuir slip model. Inter J Heat Fluid Flow 31:227–235

    Article  MathSciNet  Google Scholar 

  • Chen MD, Lin JW, Lee SC, Chang KM, Li WL (2004) Application of modified molecular gas lubrication equation to the analysis of micromotor bushings. Tribol Int 37:507–513

    Article  Google Scholar 

  • Chen Y, Zhang C, Shi M, Peterson GP (2009) Role of surface roughness characterized by fractal geometry on laminar flow in microchannels. Phys Rev E 80:026301

    Article  Google Scholar 

  • Chew AD (2009) Comment on “Survey on measurement of tangential momentum accommodation coefficient” [J Vac Sci Technol A 26, 634 (2008)]. J Vac Sci Technol A 27:591–592

    Article  Google Scholar 

  • Choi H, Lee D (2008) Computations of gas microflows using pressure correction method with Langmuir slip model. Comput Fluid 37:1309–1319

    Article  MATH  Google Scholar 

  • Colin S (2005) Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid Nanofluid 1:268–279

    Article  Google Scholar 

  • Colin S (2012) Gas microflows in the slip flow regime: a critical review on convective heat transfer. ASME J Heat Transf 134:020908

    Article  Google Scholar 

  • Colin S, Lalonde P, Caen R (2004) Validation of a second-order slip flow model in rectangular microchannels. Heat Transf Eng 25:23–30

    Article  Google Scholar 

  • Cornubert R, d’Humieres D, Levermore D (1991) A Knudsen layer theory for lattice gases. Physica D 47:241–259

    Article  MathSciNet  MATH  Google Scholar 

  • Croce G, Agaro P (2004) Numerical analysis of roughness effect on microtube heat transfer. Superlattices Microstr 35:601–616

    Article  Google Scholar 

  • Dalibrard AL, Varet DG (2011) Effective boundary condition at a rough surface starting from a slip condition. J Differ Equ 251:3450–3487

    Article  Google Scholar 

  • Deissler RG (1964) An analysis of second-order slip flow and temperature jump boundary conditions for rarefied gases. Int J Heat Mass Transf 7:681–694

    Article  MATH  Google Scholar 

  • Dongari N, Agrawal A, Agrawal A (2007) Analytical solution of gaseous slip flow in long microchannels. Int J Heat Mass Transf 50:3411–3421

    Article  MATH  Google Scholar 

  • Dongari N, Sambasivam R, Durst F (2009) Extended Navier–Stokes equations and treatments of micro-channel gas flows. J Fluid Sci Tech 4:454–467

    Article  Google Scholar 

  • Dongari N, Durst F, Chakraborty S (2010) Predicting microscale gas flows and rarefaction effects through extended Navier–Stokes–Fourier equations from phoretic transport considerations. Microfluid Nanofluid 9:831–846

    Article  Google Scholar 

  • Dongari N, Zhang YH, Reese JM (2011a) Molecular free path distribution in rarefied gases. J Phys D Appl Phys 44:125502

    Article  Google Scholar 

  • Dongari N, Zhang YH, Reese JM (2011b) Modeling of Knudsen layer effects in micro/nanoscale gas flows. J Fluid Eng 133:071101

    Article  Google Scholar 

  • Duan Z, Muzychka YS (2008) Effects of corrugated roughness on developed laminar flow in microtubes. ASME J Fluid Eng 130:031102

    Article  Google Scholar 

  • Duan Z, Muzychka YS (2010) Effects of axial corrugated roughness on low Reynolds number slip flow and continuum flow in microtubes. ASME J Heat Transf 132:041001

    Article  Google Scholar 

  • Einzel D, Panzer P, Liu M (1990) Boundary condition for fluid flow: curved or rough surfaces. Phys Rev Lett 64:2269

    Article  Google Scholar 

  • Eu BC, Khayat RE, Billing GD, Nyeland C (1987) Nonlinear transport coefficients and plane Couette flow of a viscous, heat conducting gas between two plates at different temperatures. Can J Phys 65:1090–1103

    Article  Google Scholar 

  • Ewart T, Perrier P, Graur IA, Meolans JG (2007a) Tangential momentum accommodation in microtube. Microfluid Nanofluid 3:689–695

    Article  Google Scholar 

  • Ewart T, Perrier P, Graur IA, Meolans JG (2007b) Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J Fluid Mech 584:337–356

    Article  MATH  Google Scholar 

  • Fichman M, Hetsroni G (2005) Viscosity and slip velocity in gas flow in microchannels. Phys Fluid 17:123102

    Article  Google Scholar 

  • Finger GW, Kapat JS, Bhattacharya A (2007) Molecular dynamics simulation of adsorbent layer effect on tangential momentum accommodation coefficient. ASME J Fluids Eng 129:31–39

    Article  Google Scholar 

  • Fukui S, Kaneko R (1988) Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report-derivation of a generalized lubrication equation including thermal creep flow. ASME J Tribol 110:253–262

    Article  Google Scholar 

  • Fukui S, Kaneko R (1993) Estimation of gas film lubrication effects beneath sliding bushings of micromotors using a Molecular gas film lubrication equation. Wear 168:175–179

    Article  Google Scholar 

  • Gabis DH, Loyalka SK, Storvick TS (1996) Measurements of the tangential momentum accommodation coefficient in the transition flow regime with a spinning rotor gauge. J Vac Sci Technol A 14:2592–2598

    Article  Google Scholar 

  • Gad-el-Hak M (1999) The fluid mechanics of microdevices—the Freeman scholar lecture. ASME J Fluid Eng 121:5–33

    Article  Google Scholar 

  • Gad-el-Hak M (2001) Flow physics in MEMS. Mec Ind 2:313–341

    Google Scholar 

  • Gad-el-Hak M (2003) Comments on “Critical view on new results in micro-fluid mechanics”. Int J Heat Mass Transf 46:3941–3945

    Article  MATH  Google Scholar 

  • Gad-el-Hak M (2006) Gas and liquid transport at the microscale. Heat Transf Eng 27:13–29

    Article  Google Scholar 

  • Gallis MA, Torczynski JR (2011) Direct simulation Monte Carlo-based expressions for the gas mass flow rate and pressure profile in a microscale tube. Phys Fluid 24:012005

    Article  Google Scholar 

  • Gallis MA, Torczynski JR, Rader DJ, Tij M, Santos A (2006) Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couette flow. Phys Fluids 18:017104

    Article  Google Scholar 

  • Galvin JE, Hrenya CM, Wildman RD (2007) On the role of the Knudsen layer in rapid granular flows. J Fluid Mech 585:73–92

    Article  MATH  Google Scholar 

  • Garcia RDM, Siewert CE (2007) The viscous-slip, diffusion-slip, and thermal-creep problems for a binary mixture of rigid spheres described by the linearized Boltzmann equation. Eur J Mech B/Fluid 26:749–778

    Article  MathSciNet  MATH  Google Scholar 

  • Garcia RDM, Siewert CE (2010) Viscous-slip, thermal-slip, and temperature-jump coefficients based on the linearized Boltzmann equation (and five kinetic models) with the Cercignani_Lampis boundary condition. Eur J Mech B/Fluid 29:181–191

    Article  MATH  Google Scholar 

  • Gibelli L (2012) Velocity slip coefficients based on the hard-sphere Boltzmann equation. Phys Fluid 24:022001

    Article  Google Scholar 

  • Graur IA, Meolans JG, Zeitoun DE (2006) Analytical and numerical description for isothermal gas flows in microchannels. Microfluid Nanofluid 2:64–77

    Article  Google Scholar 

  • Graur IA, Perrier P, Ghozlani W, Meolans JG (2009) Measurements of tangential momentum accommodation coefficient for various gases in plane microchannel. Phys Fluid 21:102004

    Article  Google Scholar 

  • Gu XJ, Emerson DR (2007) A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions. J Comp Phys 225:263–283

    Article  MATH  Google Scholar 

  • Guo Z, Zheng C (2008) Analysis of lattice Boltzmann equation for microscale gas flows: relaxation times, boundary conditions and the Knudsen layer. Int J Comput Fluid Dyn 22:465–473

    Article  MATH  Google Scholar 

  • Guo ZL, Zhao TS, Shi Y (2006) Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows. J Appl Phys 99:074903

    Article  Google Scholar 

  • Guo Z, Shi B, Zhao T, Zheng C (2007a) Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows. Phys Rev E 76:056704

    Article  Google Scholar 

  • Guo ZL, Shi BC, Zheng CG (2007b) An extended Navier–Stokes formulation for gas flows in the Knudsen layer near a wall. EPL 80:24001

    Article  Google Scholar 

  • Guo ZL, Zheng CG, Shi BC (2008) Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow. Phys Rev E 77:036707

    Article  Google Scholar 

  • Gusarov AV, Smurov I (2002) Gas-dynamic boundary conditions of evaporation and condensation: Numerical analysis of the Knudsen layer. Phys Fluids 14:4242–4255

    Article  MathSciNet  Google Scholar 

  • Hadjiconstantinou NG (2000) Analysis of discretization in the direct simulation Monte Carlo. Phys Fluid 12:2634–2638

    Article  Google Scholar 

  • Hadjiconstantinou NG (2003) Comment on Cercignani’s second-order slip coefficient. Phys Fluid 15:2352–2354

    Article  MathSciNet  Google Scholar 

  • Hadjiconstantinou NG (2006) The limits of Navier–Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics. Phys Fluid 18:111301

    Article  Google Scholar 

  • Hadjiconstantinou NG, Simek O (2002) Constant-wall-temperature Nusselt number in micro and nano-channels. ASME J Heat Transfer 124:356–364

    Article  Google Scholar 

  • Hare LO, Lockerby DA, Reese JM, Emerson DR (2007) Near-wall effects in rarefied gas micro-flows: some modern hydrodynamic approaches. Inter J Heat Fluid Flow 28:37–43

    Article  Google Scholar 

  • Ho CM, Tai YC (1998) Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu Rev Fluid Mech 30:579–612

    Article  Google Scholar 

  • Homayoon A, Meghdadi Isfahani AH, Shirani E, Ashrafizadeh M (2011) A novel modified lattice Boltzmann method for simulation of gas flows in wide range of Knudsen number. Int Commun Heat Mass Transf 38:827–832

    Article  Google Scholar 

  • Hossainpour S, Khadem MH (2010) Investigation of fluid flow and heat transfer characteristics of gases in microchannels with consideration of different roughness shapes at slip flow regime. Nanoscale Microscale Thermophys Eng 14:137–151

    Article  Google Scholar 

  • Hsia YT, Domoto GA (1983) An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances. ASME J Lubr Technol 105:120–130

    Article  Google Scholar 

  • Hu Y, Werner C, Li D (2003) Influence of three-dimensional roughness on pressure-driven flow through microchannels. ASME J Fluid Eng 125:871–879

    Article  Google Scholar 

  • Hwang CC, Fung RF, Yang RF, Weng CI, Li WL (1995) A new modified Reynolds equation for ultra-thin film gas lubrication. IEEE Trans Magn 32:344–347

    Article  Google Scholar 

  • Ivchenko IN, Loyalka SK, Tompson RV (1997) Slip coefficients for binary gas mixture. J Vac Sci Technol A 15:2375–2381

    Article  Google Scholar 

  • Jang J, Wereley ST (2006) Effective heights and tangential momentum accommodation coefficients of gaseous slip flows in deep reactive ion etching rectangular microchannels. J Micromech Microeng 16:493–504

    Article  Google Scholar 

  • Ji Y, Yuan K, Chung JN (2006) Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel. Int J Heat Mass Transf 49:1329–1339

    Article  MATH  Google Scholar 

  • Jie D, Diao X, Cheong KB, Yong LK (2000) Navier–Stokes simulations of gas flow in micro devices. J Micromech Microeng 10:372–379

    Article  Google Scholar 

  • Jin S, Slemrod M (2001) Regularization of the Burnett equations via relaxation. J Stat Phys 103:1009–1033

    Article  MathSciNet  MATH  Google Scholar 

  • Karniadakis GE, Beskok A (2002) Micro flows: fundamentals and simulation. Springer, New York

    MATH  Google Scholar 

  • Karniadakis GE, Beskok A, Aluru N (2005) Microflows and nanoflows: fundamentals and simulation. Springer-Verlag, New York

    MATH  Google Scholar 

  • Khadem MH, Shams M, Hossainpour S (2009) Numerical simulation of roughness effects on flow and heat transfer in microchannels at slip flow regime. Int Commun Heat Mass Transf 36:69–77

    Article  Google Scholar 

  • Kim SH, Pitsch H (2008) Analytic solution for a higher-order lattice Boltzmann method: Slip velocity and Knudsen layer. Phys Rev E 78:016702

    Article  Google Scholar 

  • Kim HM, Kim D, Kim WT, Chung PS, Jhon MS (2007) Langmuir slip model for air bearing simulation using the Lattice Boltzmann method. IEEE Trans Magnet 43:2244–2246

    Article  Google Scholar 

  • Kim SH, Pitsch H, Boyd ID (2008) Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows. Phys Rev E 77:026704

    Article  Google Scholar 

  • Kleinstreuer C, Koo J (2004) Computational analysis of wall roughness effects for liquid flow in micro-conduits. ASME J Fluid Eng 126:1–9

    Article  Google Scholar 

  • Klinc T, Kuscer I (1972) Slip coefficients for general gas-surface interaction. Phys Fluid 15:1018

    Article  Google Scholar 

  • Koura K, Matsumoto H (1992) Variable soft sphere molecular model for inverse-power-lawor Lennard–Jones potential. Phys Fluid A 4:1083–1085

    Article  Google Scholar 

  • Kovalev V, Yakunchikov A, Li F (2011) Tangential momentum and thermal accommodation coefficients for hydrogen molecules on graphite surface. Acta Astronaut 69:744–746

    Article  Google Scholar 

  • Kuhlthau AR (1949) Air friction on rapidly moving surfaces. J Appl Phys 20:217–223

    Article  Google Scholar 

  • Kunert C, Harting J (2007) Roughness induced boundary slip in microchannel flows. Phys Rev Lett 99:176001

    Article  Google Scholar 

  • Langmuir I (1933) Surface chemistry. Chem Rev 13:147–191

    Article  Google Scholar 

  • Li B, Kwok DY (2003) Discrete Boltzmann equation for microfluidics. Phys Rev Lett 90:124502

    Article  Google Scholar 

  • Li ZX, Du DX, Guo ZY (2000) Characteristics of frictional resistance for gas flow in microtubes. In: Proceedings of symposium on energy engineering in the 21st Century, pp 658–664

  • Li W-L, Lin J-W, Lee S-C, Chen M-D (2002) Effects of roughness on rarefied gas flow in long microtubes. J Micromech Microeng 12:149–156

    Article  Google Scholar 

  • Li Q, He YL, Tang GH, Tao WQ (2011) Lattice Boltzmann modeling of microchannel flows in the transition flow regime. Microfluid Nanofluid 10:607–618

    Article  Google Scholar 

  • Lilley CR, Sader JE (2007) Velocity gradient singularity and structure of the velocity profile in the Knudsen layer according to the Boltzmann equation. Phys Rev E 76:1–4

    Article  Google Scholar 

  • Lilley CR, Sader JE (2008) Velocity profile in the Knudsen layer according to the Boltzmann equation. Proc R Soc A 464:2015–2035

    Article  MATH  Google Scholar 

  • Lilly TC, Duncan JA, Nothnagel SL, Gimelshein SF, Gimelshein NE, Ketsdever AD, Wysong IJ (2007) Numerical and experimental investigation of microchannel flows with rough surfaces. Phys Fluid 19:106101

    Article  Google Scholar 

  • Liu CF, Ni YS (2008) The effect of surface roughness on rarefied gas flows by lattice Boltzmann method. Chin Phys B 17:4554–4561

    Article  Google Scholar 

  • Lockerby DA, Reese JM (2008) On the modelling of isothermal gas flows at the microscale. J Fluid Mech 604:235–261

    Article  MathSciNet  MATH  Google Scholar 

  • Lockerby DA, Reese JM, Emerson DR, Barber RW (2004) Velocity boundary condition at solid walls in rarefied gas calculations. Phys Rev E 70:017303

    Article  Google Scholar 

  • Lockerby DA, Reese JM, Gallis MA (2005a) Capturing the Knudsen layer in continuum-fluid models of nonequilibrium gas flows. AIAA J 43:1391–1393

    Article  Google Scholar 

  • Lockerby DA, Reese JM, Gallis MA (2005b) The usefulness of higher-order constitutive relations for describing the Knudsen layer. Phys Fluids 17:100609

    Article  Google Scholar 

  • Lord RG (1991) Some extensions to the Cercignani-Lampis gas-surface scattering kernel. Phys Fluid A: Fluid Dyn 3:706–710

    Article  MATH  Google Scholar 

  • Lord RG (1995) Some further extensions of the Cercignani-Lampis gas-surface interaction model. Phys Fluid 7:1159–1161

    Article  MATH  Google Scholar 

  • Lorenzani S (2011) Higher order slip according to the linearized Boltzmann equation with general boundary conditions. Phil Trans R Soc A 369:2228–2236

    Article  MathSciNet  MATH  Google Scholar 

  • Loyalka SK (1969) Thermal transpiration in a cylindrical tube. Phys Fluids 12:2301–2305

    Article  Google Scholar 

  • Loyalka SK (1971) Approximate method in kinetic theory. Phys Fluid 14:2291–2294

    Article  MATH  Google Scholar 

  • Loyalka SK, Hickey KA (1989a) Plane Poiseuille flow: near continuum results for a rigid sphere gas. Phys A 160:395–410

    Article  Google Scholar 

  • Loyalka SK, Hickey HA (1989b) Velocity slip and defect: hard sphere gas. Phys Fluids A 1:612–614

    Article  MATH  Google Scholar 

  • Loyalka SK, Petrellis N, Stvorick ST (1975) Some numerical results for the BGK model: thermal creep and viscous slip problems with arbitrary accommodation of the surface. Phys Fluid 18:1094

    Article  MATH  Google Scholar 

  • Marques W, Kremer GM, Sharipov FM (2000) Couette flow with slip and jump boundary conditions. Contin Mech Thermodyn 12:379–386

    Article  MATH  Google Scholar 

  • Maurer J, Tabeling P, Joseph P, Willaime H (2003) Second-order slip laws in microchannels for helium and nitrogen. Phys Fluid 15:2613–2621

    Article  Google Scholar 

  • Maxwell JC (1879) On stresses in rarified gases arising from inequalities of temperature. Phil Trans Roy Soc 170:231–256

    Article  MATH  Google Scholar 

  • McCormick NG (2005) Gas-surface accommodation coefficients from viscous slip and temperature jump coefficients. Phys Fluid 17:107104

    Article  Google Scholar 

  • Mcnenly MJ, Gallis MA, Boyd ID (2005) Empirical slip and viscosity performance for microscale gas flow. Int J Numer Meth Fluids 49:1169–1191

    Article  MATH  Google Scholar 

  • Michalis VK, Kalarakis AN, Skouras ED, Burganos VN (2010) Rarefaction effects on gas viscosity in the Knudsen transition regime. Microfluid Nanofluid 9:847–853

    Article  Google Scholar 

  • Millikan RA (1923) Coefficients of slip in gases and the law of reflection of molecules from the surfaces of solids and liquids. Phys Rev 21:217–238

    Article  Google Scholar 

  • Mitsuya Y (1993) Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip flow model and considering surface accommodation coefficient. J Trib 115:289–294

    Article  Google Scholar 

  • Morini GL, Spiga M, Tartarini P (2004) The rarefaction effect on the friction factor of gas flow in microchannels. Superlattices Microstruct 35:587–599

    Article  Google Scholar 

  • Morini GL, Lorenzini M, Spiga M (2005) A criterion for experimental validation of slip-flow models for incompressible rarefied gases through microchannels. Microfluid Nanofluid 1:190–196

    Article  Google Scholar 

  • Myong RS (2001) A computational method for Eu’s generalized hydrodynamic equations of rarefied and microscale gas dynamics. J Comput Phys 168:47–72

    Article  MATH  Google Scholar 

  • Myong RS (2004a) Gaseous slip models based on the Langmuir adsorption isotherm. Phys Fluid 16:104–117

    Article  Google Scholar 

  • Myong RS (2004b) A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows. J Comput Phys 195:655–676

    Article  MATH  Google Scholar 

  • Myong RS, Reese JM, Barber RW, Emerson DR (2005) Velocity slip in microscale cylindrical Couette flow: the Langmuir model. Phys Fluid 17:087105

    Article  Google Scholar 

  • Naris S, Valougeorgis D, Sharipov F, Kalempa D (2004) Discrete velocity modelling of gaseous mixture flows in MEMS. Superlattices Microstruct 35:629–643

    Article  Google Scholar 

  • Neto C, Evans DR, Bonaccurso E, Butt H-J, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859–2897

    Article  Google Scholar 

  • Ng EY-K, Liu N (2002) Stress-density ratio slip-corrected Reynolds equation for ultra-thin film gas bearing lubrication. Phys Fluids 14:1450–1457

    Article  Google Scholar 

  • Ng EY-K, Liu N (2005) A multicoefficient slip-corrected Reynolds equation for micro-thin film gas Lubrication. Int J Rotat Mach 2:105–111

    Google Scholar 

  • Ohwada T, Sone Y, Aoki K (1989) Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hard sphere molecules. Phys Fluids A 1:1588–1599

    Article  MATH  Google Scholar 

  • Oran ES, Oh CK, Cybyk BZ (1998) Direct Simulation Monte Carlo: recent advances and application. Annu Rev Fluid Mech 30:403–441

    Article  MathSciNet  Google Scholar 

  • Ozalp AA (2008) Roughness induced forced convective laminar-transitional micropipe flow: energy and exergy analysis. Heat Mass Transf 45:31–46

    Article  Google Scholar 

  • Ozalp AA (2011) Laminar-transitional micropipe flows: energy and exergy mechanisms based on Reynolds number, pipe diameter, surface roughness and wall heat flux. Heat Mass Transf. doi:10.1007/s00231-011-0832-6

    MATH  Google Scholar 

  • Pan LS, Liu GR, Lam KY (1999) Determination of slip coefficient for rarefied gas flows using direct simulation Monte Carlo. J Micromech Microeng 9:89–96

    Article  Google Scholar 

  • Papadopoulos CI, Nikolakopoulos PG, Kaiktsis L (2011) Evolutionary optimization of micro-thrust bearings with periodic partial trapezoidal surface texturing. ASME J Eng Gas Turbines Power 133:012301

    Article  Google Scholar 

  • Park JH, Bahukudumbi P, Beskok A (2004) Rarefaction effects on shear driven oscillatory gas flows: a direct simulation Monte Carlo study in the entire Knudsen regime. Phys Fluid 16:317–330

    Article  Google Scholar 

  • Peng Y, Lu X, Luo J (2004) Nanoscale effect on ultrathin gas film lubrication in hard disk drive. ASME J Tribol 126:347–352

    Article  Google Scholar 

  • Pitakarnnop J, Varoutis S, Valougeorgis D, Geoffroy S, Baldas L, Colin S (2010) A novel experimental setup for gas microflows. Microfluid Nanofluid 8:57–72

    Article  Google Scholar 

  • Pollard WG, Present RD (1948) On gaseous self-diffusion in long capillary tubes. Phys Rev 73:762–774

    Article  Google Scholar 

  • Porodnov BT, Suetin PE, Borisov SF, Akinshin VD (1974) Experimental investigation of rarefied gas flow in different channels. J Fluid Mech 64:417–437

    Article  Google Scholar 

  • Rawool AS, Mitra SK, Kandlikar SG (2006) Numerical simulation of flow through microchannels with designed roughness. Microfluid Nanofluid 2:215–221

    Article  Google Scholar 

  • Reese JM, Zheng Y, Lockerby DA (2007) Computing the near-wall region in gas micro and nanofluidics: critical Knudsen layer phenomena. J Comput Theor Nanosci 4:807–813

    Google Scholar 

  • Roohi E, Darbandi M (2009) Extending the Navier–Stokes solutions to transition regime in two-dimensional micro- and nanochannel flows using information preservation scheme. Phys Fluid 21:082001

    Article  Google Scholar 

  • Sbragaglia M, Succi S (2005) Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions. J Phys Fluid 17:093602

    Article  Google Scholar 

  • Schaaf SA, Chambre PL (1961) Flow of rarefied gases. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Schamberg R (1947) The fundamental differential equations and the boundary conditions for high speed slip-flow, and their application to several specific problems. PhD thesis, California Institute of Technology

  • Seidl M, Steinheil E (1974) Measurement of momentum accommodation coefficients on surfaces characterized by Auger Spectroscopy. In: Rarefied Gas Dynamics, Ninth International Symposium, Germany, pp E 9.1–E 9.12

  • Shan X, Yuan X, Chen H (2006) Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J Fluid Mech 550:413–441

    Article  MathSciNet  MATH  Google Scholar 

  • Sharipov F (2003) Application of the Cercignani-Lampis scattering kernel to calculations of rarefied gas flows. II. Slip and jump coefficients. Eur J Mech B/Fluid 22:133–143

    Article  MathSciNet  MATH  Google Scholar 

  • Sharipov F (2004) Data on the velocity slip and temperature jump coefficients. In: Proceedings of the 5th international conference on thermal and mechanical simulation and experiments in microelectronics and microsystems-EuroSimE, Shaker, Belgium, pp 243–249

  • Sharipov F (2011) Data on the velocity slip and temperature jump on a gas-solid interface. J Phys Chem Ref Data 40(2):023101

    Article  Google Scholar 

  • Sharipov F, Kalempa D (2003) Velocity slip and temperature jump coefficients for gaseous mixtures. I. Viscous slip coefficient. Phys Fluid 15:1800–1806

    Article  Google Scholar 

  • Sharipov F, Seleznev V (1998) Data on internal rarefied gas flows. J Phys Chem Ref Data 27(3):657–706

    Article  Google Scholar 

  • Shen S, Chen G, Crone RM, Dufresne MA (2007) A kinetic-theory based first order slip boundary condition for gas flow. Phys Fluids 19:086101

    Article  Google Scholar 

  • Siewert CE (2003) Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearized Boltzmann equation and the Cercignani-Lampis boundary condition. Phys Fluids 15:1696–1701

    Article  MathSciNet  Google Scholar 

  • Siewert CE, Sharipov F (2002) Model equations in rarefied gas dynamics: Viscous-slip and thermal-slip coefficients. Phys Fluid 14:4123–4129

    Article  MathSciNet  Google Scholar 

  • Siewert CE, Valougeorgis D (2004) Concise and accurate solutions to half-space binary-gas flow problems defined by the McCormack model and specular-diffuse wall conditions. Eur J Mech B/Fluid 23:709–726

    Article  MathSciNet  MATH  Google Scholar 

  • Sone Y, Takata S, Ohwada T (1990) Numerical analysis of the plane Couette flow of a rarefied gas on the basis of the linearized Boltzmann equation for hard sphere molecules. Eur J Mech B/Fluids 9:273–288

    MATH  Google Scholar 

  • Sreekanth AK (1969) Slip flow through long circular tubes. In: Proceedings of the sixth international symposium on rarefied gas dynamics, Academic, New York, pp 667–676

  • Stops DW (1970) The mean free path of gas molecules in the transition regime. J Phys D Appl Phys 3:685–696

    Article  Google Scholar 

  • Struchtrup H, Torrilhon M (2003) Regularization of Grid’s 13 moment equations: derivation and linear analysis. Phys Fluids 15:2668–2680

    Article  MathSciNet  Google Scholar 

  • Struchtrup H, Torrilhon M (2008) Higher-order effects in rarefied channel flows. Phys Rev E 78:046301

    Article  MathSciNet  Google Scholar 

  • Suetin PE, Porodnov BT, Chernjak VG, Borisov SF (1973) Poiseuille flow at arbitrary Knudsen numbers and tangential momentum accommodation. J Fluid Mech 60:581–592

    Article  MATH  Google Scholar 

  • Sun Y, Chan WK (2004) Analytical modeling of rarefied Poiseuille flow in microchannels. J Vac Sci Technol A 22:383–395

    Article  Google Scholar 

  • Sun H, Faghri M (2003) Effects of surface roughness on nitrogen flow in a microchannel using the direct simulation monte carlo method. Numer Heat Transf A 43:1–8

    Article  Google Scholar 

  • Sun J, Li ZX (2008) Effect of gas adsorption on momentum accommodation coefficients in microgas flows using molecular dynamic simulations. Molecular Phys 106:2325–2332

    Article  Google Scholar 

  • Sun Y, Chan WK, Liu N (2002) A slip model with molecular dynamics. J Micromech Microeng 12:316–322

    Article  Google Scholar 

  • Tang GH, He YL, Tao WQ (2007a) Comparison of gas slip models with solutions of linearized Boltzmann equation and direct simulation of Monte Carlo method. Int J Mod Phys C 18:203–216

    Article  MATH  Google Scholar 

  • Tang GH, Zhuo L, He YL, Tao WQ (2007b) Experimental study of compressibility, roughness and rarefaction influences on microchannel flow. Int J Heat Mass Transf 50:2282–2295

    Article  Google Scholar 

  • Tang GH, Zhang YH, Emerson DR (2008) Lattice Boltzmann models for nonequilibrium gas flows. Phys Rev E 77:046701

    Article  Google Scholar 

  • Tekasakul P, Bentz JA, Tompson RV, Loyalka SK (1996) The spinning rotor gauge: measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients. J Vac Sci Technol A 14:2946–2952

    Article  Google Scholar 

  • Thomas LB, Lord RG (1974) Comparative measurements of tangential momentum and thermal accommodations on polished and on roughened steel spheres. Proc Int Symp On Rarefied Gas, Dynamics, pp 405–412

    Google Scholar 

  • To QD, Bercegeay C, Lauriat G, Leonard C, Bonnet G (2010) A slip model for micro/nano gas flows induced by body forces. Microfluid Nanofluid 8:417–422

    Article  Google Scholar 

  • Turner SE, Lam LC, Faghri M, Gregory OJ (2004) Experimental investigation of gas flow in microchannels. ASME J Heat Transf 126:753

    Article  Google Scholar 

  • Veijola T, Turowski M (2001) Compact damping models for laterally moving microstructures with gas-rarefaction effects. J Microelectromech Syst 10:263–273

    Article  Google Scholar 

  • Veltzke T, Thoming J (2012) An analytically predictive model for moderately rarefied gas flow. J Fluid Mech 698:406–422

    Article  MathSciNet  MATH  Google Scholar 

  • Wakabayashi M, Ohwada T, Golse F (1996) Numerical analysis of the shear and thermal creep flows of a rarefied gas over the plane wall of a Maxwell-type boundary on the basis of the linearized Boltzmann equation for hard-sphere molecules. Eur J Mech B/Fluids 15:175–201

    MATH  Google Scholar 

  • Wang XQ, Yap C, Mujumdar AS (2005) Effects of two-dimensional roughness in flow in microchannel. ASME J Electron Packag 127:357–361

    Article  Google Scholar 

  • Watari M (2009) Velocity slip and temperature jump simulations by the three-dimensional thermal finite-difference lattice Boltzmann method. Phys Rev E 79:066706

    Article  Google Scholar 

  • Watari M (2010) Relationship between accuracy and number of velocity particles of the finite-difference lattice Boltzmann method in velocity slip simulations. ASME J Fluid Eng 132:101401

    Article  Google Scholar 

  • Weng HC, Chen CK (2008) A challenge in Navier–Stokes-based continuum modeling: Maxwell-Burnett slip law. Phys Fluid 20:106101

    Article  Google Scholar 

  • Weng CI, Li WL, Hwang CC (1999) Gaseous flow in microtubes at arbitrary Knudsen numbers. Nanotechnology 10:373–379

    Article  Google Scholar 

  • White J (2010) A gas lubrication equation for high Knudsen number flows and striated rough surfaces. ASME J Tribol 132:021701

    Article  Google Scholar 

  • Wu L (2008) slip model for rarefied gas flows at arbitrary Knudsen number. Appl Phys Lett 93:253103

    Article  Google Scholar 

  • Wu L, Bogy DB (2001) A generalized compressible Reynolds lubrication equation with bounded contact pressure. Phys Fluid 13:2237–2244

    Article  Google Scholar 

  • Wu L, Bogy DB (2003) New first and second order slip models for the compressible Reynolds equation. Trans ASME J Tribol 125:558–561

    Article  Google Scholar 

  • Xiong R, Chung JN (2010) Investigation of laminar flow in microtubes with random rough surfaces. Microfluid Nanofluid 8:11–20

    Article  Google Scholar 

  • Xue H, Fan Q (2000) A high order modification on the analytic solution of microchannel gaseous flows. In: Proceeding of ASME fluids engineering division summer meeting, Boston, USA, FEDSM2000-11313

  • Yamaguchi H, Hanawa T, Yamamoto O, Matsuda Y, Egami Y, Niimi T (2011) Experimental measurement on tangential momentum accommodation coefficient in a single microtube. Microfluid Nanofluid 11:57–64

    Article  Google Scholar 

  • Yamamoto K, Takeuchi H, Hyakutake T (2006) Characteristics of reflected gas molecules at a solid surface. Phys Fluid 18:046103

    Article  Google Scholar 

  • Young JB (2011) Calculation of Knudsen layers and jump conditions using the linearised G13 and R13 moment methods. Int J Heat Mass Transf 54:2902–2912

    Article  MATH  Google Scholar 

  • Yudistiawan WP, Ansumali S, Karlin IV (2008) Hydrodynamics beyond Navier–Stokes: the slip flow model. Phys Rev E 78:016705

    Article  MathSciNet  Google Scholar 

  • Zahmatkesh I, Alishahi MM, Emdad H (2011) New velocity-slip and temperature-jump boundary conditions for Navier–Stokes computation of gas mixture flows in microgeometries. Mech Res Commun 38:417–424

    Article  Google Scholar 

  • Zhang J (2011) Lattice Boltzmann method for microfluidics: models and applications. Microfluid Nanofluid 10:1–28

    Article  MATH  Google Scholar 

  • Zhang WM, Meng G (2009) Property analysis of the rough slider bearings in micromotors for MEMS applications. IEEE/ASME Trans Mechatron 14:465–473

    Article  Google Scholar 

  • Zhang YH, Gu XJ, Barber RW, Emerson DR (2006a) Capturing Knudsen layer phenomena using a lattice Boltzmann model. Phys Rev E 74:046704

    Article  Google Scholar 

  • Zhang R, Shan X, Chen H (2006b) Efficient kinetic method for fluid simulation beyond the Navier–Stokes equation. Phys Rev E 74:046703

    Article  Google Scholar 

  • Zhang WM, Meng G, Zhou JB, Chen JY (2009) Slip model for the molecular gas film lubrication of the slider bearing in a micromotor. Microsys Technol 15:953–961

    Article  Google Scholar 

  • Zhang HW, Zhang ZQ, Zheng YG, Ye HF (2010a) Corrected second-order slip boundary condition for fluid flows in nanochannels. Phys Rev E 81:066303

    Article  Google Scholar 

  • Zhang WM, Meng G, Peng ZK (2010b) Random surface roughness effect on slider microbearing lubrication. Micro Nano Lett 5:347–350

    Article  Google Scholar 

  • Zhang WM, Zhou JB, Meng G (2011) Performance and stability analysis of gas-lubricated journal bearings in MEMS. Tribol Int 44:887–897

    Article  Google Scholar 

  • Zhang HW, Zhang ZQ, Zheng YG, Ye HF (2012a) Molecular dynamics-based prediction of boundary slip of fluids in nanochannels. Microfluid Nanofluid 12:107–115

    Article  Google Scholar 

  • Zhang WM, Meng G, Wei KX (2012b) Numerical prediction of surface roughness effect on slip flow in gas-lubricated journal microbearings. Tribol Trans 55:71–76

    Article  Google Scholar 

  • Zheng Y, Reese JM, Scanlon TJ, Lockerby DA (2006) Scaled Navier-Stokes-Fourier equations for gas flow and heat transfer phenomena in micro- and nanosystems. In: Proceedings of ASME ICNMM2006, June 19–21, Limerick, Ireland 96066

  • Zhong X, MacCormack RW, Chapman DR (1993) Stabilization of the Burnett equations and application to hypersonic flows. AIAA J 31:1036–1043

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under Grant No. 11072147 and the Specialized Research Fund for State Key Laboratory of Mechanical System and Vibration under Grant No. MSVMS201106, and sponsored by Shanghai Rising-Star Program under Grant No. 11QA1403400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, WM., Meng, G. & Wei, X. A review on slip models for gas microflows. Microfluid Nanofluid 13, 845–882 (2012). https://doi.org/10.1007/s10404-012-1012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1012-9

Keywords

Navigation