Skip to main content
Log in

Lattice Boltzmann modeling of microchannel flows in the transition flow regime

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Owing to its kinetic nature and distinctive computational features, the lattice Boltzmann method for simulating rarefied gas flows has attracted significant research interest in recent years. In this article, a lattice Boltzmann (LB) model is presented to study microchannel flows in the transition flow regime, which have gained much attention because of fundamental scientific issues and technological applications in various micro-electro-mechanical system (MEMS) devices. In the model, a Bosanquet-type effective viscosity is used to account for the rarefaction effect on gas viscosity. To match the introduced effective viscosity and to gain an accurate simulation, a modified second-order slip boundary condition with a new set of slip coefficients is proposed. Numerical investigations demonstrate that the results, including the velocity profile, the non-linear pressure distribution along the channel, and the mass flow rate, are in good agreement with the solution of the linearized Boltzmann equation, the direct simulation Monte Carlo (DSMC) results, and the experimental results over a broad range of Knudsen numbers. It is shown that taking the rarefaction effect on gas viscosity into consideration and employing an appropriate slip boundary condition can lead to a significant improvement in the modeling of rarefied gas flows with moderate Knudsen numbers in the transition flow regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ansumali S, Karlin IV (2002) Kinetic boundary conditions in the lattice Boltzmann method. Phys Rev E 66:026311

    Article  MathSciNet  Google Scholar 

  • Ansumali S, Karlin IV, Arcidiacono S, Abbas A, Prasianakis NI (2007) Hydrodynamics beyond Navier–Stokes: exact solution to the lattice Boltzmann hierarchy. Phys Rev Lett 98:124502

    Google Scholar 

  • Arkilic EB, Schmidt MA, Breuer KS (1997) Slip flow in microchannel. J Microelectromech Syst 6:167–174

    Article  Google Scholar 

  • Aubert C, Colin SS (2001) High order boundary conditions for gaseous flows in rectangular microducts. Microscale Thermophys Eng 5(1):41–54

    Article  Google Scholar 

  • Baker LL, Hadjiconstantinou NG (2005) Variance reduction for Monte Carlo solutions of the Boltzmann equation. Phys Fluids 17:051703

    Article  Google Scholar 

  • Barber RW, Emerson DR (2006) Challenges in modeling gas-phase flow in microchannels: from slip to transition. Heat Transf Eng 27(4):3–12

    Article  Google Scholar 

  • Benzi R, Succi S, Vergassola M (1992) The lattice Boltzmann equation: theory and applications. Phys Rep 222:145–197

    Article  Google Scholar 

  • Beskok A, Karniadakis GE (1999) A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys Eng 3(1):43–77

    Article  Google Scholar 

  • Bird G (1994) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford

  • Bosanquet CH (1944) The optimum pressure for a diffusion separation plants. British TA Report BR-507, Sep. 27

  • Cercignani C (1988) The Boltzmann equation and its applications. Springer, New York

    MATH  Google Scholar 

  • Cercignani C (1990) Mathematical methods in kinetic theory. Plenum Press, New York

  • Cercignani C, Lampis M, Lorenzani S (2004) Variational approach to gas flows in microchannels. Phys Fluids 16(9):3426–3437

    Article  MathSciNet  Google Scholar 

  • Chen S, Martinez D, Mei R (1996) On boundary conditions in lattice Boltzmann methods. Phys Fluids 8:2527–2537

    Article  MATH  MathSciNet  Google Scholar 

  • Chun J, Koch DL (2005) A direct simulation Monte Carlo method for rarefied gas flows in the limit of small Mach number. Phys Fluids 17:107107

    Article  MathSciNet  Google Scholar 

  • Colin S (2005) Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid Nanofluid 1:268–279

    Article  Google Scholar 

  • Colin S, Lalonde P, Caen R (2004) Validation of a second-order slip flow model in rectangular microchannels.Heat Transf Eng 25(3):23–30

    Article  Google Scholar 

  • Dongari N, Sharma A, Durst F (2009) Pressure-driven diffusive gas flows in micro-channels:from the Knudsen to the continuum regimes. Microfluid Nanofluid 6(5):679–692

    Article  Google Scholar 

  • Fan J, Shen C (2001) Statistical simulation of low-speed rarefied gas flows. J Comput Phys 167:393–412

    Article  MATH  Google Scholar 

  • Gu XJ, Emerson DR (2007) A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions. J Comput Phys 225:263–283

    Article  MATH  Google Scholar 

  • Guo ZL, Shi BC, Zhao TS, Zheng CG (2007) Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows. Phys Rev E 76:056704

    Article  Google Scholar 

  • Guo ZL, Zhao TS, Shi Y (2006) Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows. J Appl Phys 99:074903

    Article  Google Scholar 

  • Guo ZL, Zheng CG (2008) Analysis of lattice Boltzmann equation for microscale gas flows: relaxation time, Boundary condiction, and Knudsen layer. Int J Comput Fluid Dyn 22(7):465–473

    Article  MATH  Google Scholar 

  • Guo Z, Zheng C, Shi B (2008) Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow. Phys Rev E 77(3):036707

    Article  Google Scholar 

  • Hadjiconstantinou NG (2003) Comment on Cercignani’s second-order slip coefficient. Phys Fluids 15(6):2352–2354

    Article  MathSciNet  Google Scholar 

  • He X, Luo LS (1997) Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys Rev E 56(6):6811–6817

    Article  Google Scholar 

  • Higuera FJ, Succi S, Benzi R (1989) Lattice gas dynamics with enhanced collisions. Europhys Lett 9(4):345–349

    Article  Google Scholar 

  • Ho CM, Tai YC (1998) Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu Rev Fluid Mech 30:579–612

    Article  Google Scholar 

  • Hsia YT, Domoto GA (1983) An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances. Trans ASME J Tribol 105:120

    Google Scholar 

  • Karlin IV, Ansumali S (2007) Renormalization of the lattice Boltzmann hierarchy. Phys Rev E 76:025701(R)

    Google Scholar 

  • Karniadakis GE, Beskok A (2002) Micro flows: fundamentals and simulation. Springer, New York

    MATH  Google Scholar 

  • Kim SH, Pitsch H, Boyd ID (2008a) Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers. J Comput Phys 227:8655–8671

    Article  MATH  Google Scholar 

  • Kim SH, Pitsch H, Boyd ID (2008b) Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows. Phys Rev E 77(2):026704

    Article  Google Scholar 

  • Lai HL, Ma CF (2009) Lattice Boltzmann method for the generalized Kuramoto–Sivashinsky equation. Physica A 388(5):1405–1412

    Article  MathSciNet  Google Scholar 

  • Lallemand P, Luo LS (2000) Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys Rev E 61(6):6546–6562

    Article  MathSciNet  Google Scholar 

  • Lee T, Lin CL (2005) Rarefaction and compressibility effects of the lattice-Boltzmann-equation method in a gas microchannel. Phys Rev E 71:046706

    Article  Google Scholar 

  • Li Q, He YL, Tang GH, Tao WQ (2010) Improved axisymmetric lattice Boltzmann scheme. Phys Rev E 81(5):056707

    Article  Google Scholar 

  • Lim CY, Shu C, Niu XD, Chew YT (2002) Application of lattice Boltzmann method to simulate microchannel flows. Phys Fluids 14:2299–2308

    Article  Google Scholar 

  • Lockerby DA, Reese JM, Gallis MA (2005) Capturing the Knudsen layer in continuum-fluid models of non-equilibrium gas flows. AIAA J 43(6):1391–1393

    Article  Google Scholar 

  • Loyalka SK (1971) Velocity slip coefficient and the diffusion slip velocity for a multicomponent gas mixture. Phys Fluids 14:2291–2297

    Article  MATH  Google Scholar 

  • Loyalka SK, Petrellis N, Strovick TS (1975) Some numerical results for the BGK model: thermal creep and viscous slip problems with arbitrary accomodation at the surface. Phys Fluids 18:1094–1100

    Article  MATH  Google Scholar 

  • Maurer J, Tabeling P, Joseph P, Willaime H (2003) Second-order slip laws in microchannels for helium and nitrogen. Phys. Fluids 15:2613–2622

    Article  Google Scholar 

  • Meng JP, Zhang YH (2009) arXiv: 0908.4520

  • Michalis VK, Kalarakis AN, Skouras ED, Burganos VN (2010) Rarefaction effects on gas viscosity in the Knudsen transition regime. Microfluid Nanofluid 9(4–5):847–853

    Article  Google Scholar 

  • Nie X, Doolen G, Chen S (2002) Lattice-Boltzmann simulations of fluid flows in MEMS. J Stat Phys 107:279–289

    Article  MATH  Google Scholar 

  • Niu XD, Hyodo SA, Munekata T, Suga K (2007) Kinetic lattice Boltzmann method for microscale gas flows: issues on boundary condition, relaxation time, and regularization. Phys Rev E 76:036711

    Article  Google Scholar 

  • Niu XD, Shu C, Chew YT (2004) A lattice Boltzmann BGK model for simulation of microflows. Europhys Lett 67:600–606

    Article  Google Scholar 

  • Ohwada T, Sone Y, Aoki K (1989) Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hard-sphere molecules. Phys Fluids A 1:1588–1599

    Article  MATH  Google Scholar 

  • Qian YH, D’Humières D, Lallemand P (1992) Lattice BGK models for Navier–Stokes equation. Europhys Lett 17(6):479–484

    Article  MATH  Google Scholar 

  • Sbragaglia M, Succi S (2005) Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions. Phys Fluids 17:093602

    Article  Google Scholar 

  • Schaaf SA, Chambré PL (1961) Flow of rarefied gases. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Shan X, Yuan XF, Chen H (2006) Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J Fluid Mech 550:413–441

    Article  MATH  MathSciNet  Google Scholar 

  • Sharipov F (1999) Non-isothermal gas flow through rectangular microchannels. J Micromech Microeng 9:394–401

    Article  Google Scholar 

  • Shen C, Tian DB, Xie C, Fan J (2004) Examination of the LBM in simulation of microchannel flow in transitional regime. Microscale Thermophys Eng 8(4):423–432

    Article  Google Scholar 

  • Stops DW (1970) The mean free path of gas molecules in the transition regime. J Phys D 3(5):685–697

    Article  Google Scholar 

  • Struchtrup H, Torrilhon M (2003) Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys Fluids 15:2668–2680

    Article  MathSciNet  Google Scholar 

  • Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Clarendon Press, Oxford.

  • Succi S (2002) Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis. Phys Rev Lett 89:064502

    Article  Google Scholar 

  • Sun Y, Chan WK (2004) Analytical modeling of rarefied Poiseuille flow in microchannels. J Vac Sci Technol A 22(2):383–395

    Article  Google Scholar 

  • Tang GH, Tao WQ, He YL (2004) Lattice Boltzmann method for simulating gas flow in microchannels. Int J Mod Phys C 15:335–347

    Article  MATH  Google Scholar 

  • Tang GH, Tao WQ, He YL (2005) Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions. Phys Fluids 17:058101

    Article  Google Scholar 

  • Tang GH, Zhang YH, Gu XJ, Emerson DR (2008) Lattice Boltzmann modeling Knudsen layer effect in non-equilibrium flows. Europhys Lett 83:40008

    Article  Google Scholar 

  • Verhaeghe F, Luo LS, Blanpain B (2009) Lattice Boltzmann modeling of microchannel flow in slip flow regime. J Comput Phys 228(1):147–157

    Article  MATH  MathSciNet  Google Scholar 

  • Xu K, Li ZH (2004) Microchannel flow in the slip regime: gas-kinetic BGK-Burnett solutions. J Fluid Mech 513:87–110

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang YH, Qin R, Emerson DR (2005) Lattice Boltzmann simulation of rarefied gas flows in microchannels. Phys Rev E 71:047702

    Article  Google Scholar 

  • Zhang YH, Gu XJ, Barber RW, Emerson DR (2006) Capturing Knudsen layer phenomena using a lattice Boltzmann model. Phys Rev E 74:046704

    Article  Google Scholar 

  • Zhang YH, Gu XJ, Barber RW, Emerson DR (2007) Modelling thermal flow in the transition regime using a lattice Boltzmann approach. Europhys Lett 77:30003

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Project of National Natural Science Foundation of China (No. U0934005) and the National Basic Research Program of China (No. 2010CB227100). Q. Li would like to thank Dr. Y. J. Gao (University of Cambridge) and Prof. Z. L. Guo (Huazhong University of Science and Technology) for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. L. He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., He, Y.L., Tang, G.H. et al. Lattice Boltzmann modeling of microchannel flows in the transition flow regime. Microfluid Nanofluid 10, 607–618 (2011). https://doi.org/10.1007/s10404-010-0693-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0693-1

Keywords

Navigation