Skip to main content
Log in

A multifunction and bidirectional valve-less rectification micropump based on bifurcation geometry

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a novel valve-less rectification micropump based on bifurcation geometry. Three micropumps based on three different bifurcation configurations were designed, fabricated and experimentally investigated. These designs demonstrate the potentials of developing bidirectional micropumps and multifunction microfluidic devices (combined functions of micro pumping and mixing). Polydimethylsiloxane (PDMS) was employed to fabricate the micropumps. Circular piezoelectric transducers (PZT) were used as flow actuators. Detailed fabrication procedures are illustrated. The micropumps were tested against two ranges of actuator frequencies. The first test was conducted in a frequency range between 0 and 100 Hz with small increments of 5 Hz, while the second test was conducted in a frequency range between 0 and 300 Hz with increments of 50 Hz. Ethanol was used as the working fluid in all experiments. A new dimensionless parameter was introduced to evaluate the efficiency of valve-less rectification micropumps and determine the optimum operational frequency. The flow rate and maximum back pressure were measured. Results of experiments confirmed and demonstrated the feasibility of valve-less rectification micropumps based on bifurcation geometry at a low frequency range. Additionally, results showed the potentials of multifunctional, bidirectional, and self-priming micropumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amirouche F, Zhou Y, Johnson T (2009) Current micropump technologies and their biomedical applications. Microsyst Technol 15:647–666

    Article  Google Scholar 

  • Bardell R, Sharma R, Forster FK, Afromowitz MA, Penney R (1997) Designing high-performance micro-pumps based on no-moving- parts valves. In: Lin L, Goodson KE et al (eds) Microelectro-mechanical systems (MEMS), Proceedings of the ASME IMECE (International Mechanical Engineering Congress and Exposition), vol DSC-234/HTD-354. Dallas, pp 47–53

  • Büttgenbach S, Robohm C (1999) Microflow devices for miniaturized chemical analysis systems. Proc SPIE 3539:51–61

    Article  Google Scholar 

  • Byun D, Jihoon K, Ko HS, Park HC (2008) Direct measurement of slip flows in superhydrophobic microchannels with transverse grooves. Phys Fluids 20(11):113601–13601-9

    Article  Google Scholar 

  • Chen Y, Kang S, Wu L, Lee S (2008) Fabrication and investigation of PDMS micro-diffuser/nozzle. J Mater Process Technol 198:478–484

    Article  Google Scholar 

  • Cui Q, Liu C, Zha XF (2007) Study on a piezoelectric micropump for the controlled drug delivery system. Microfluid Nanofluid 3:377–390

    Article  Google Scholar 

  • Cui Q, Liu C, Zha XF (2008) Simulation and optimization of a piezoelectric micropump for medical applications. Int J Manuf Technol 36:516–524

    Article  Google Scholar 

  • Deshmukh AA, Liepmann D, Pisano AP, Lee LP (2001) Continuous microfluidic mixing using pulsatile micropumps. Ph.D. dissertation, Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, USA

  • Fadl A, Zhang Z, Faghri M, Meyer D, Simmon E (2007) Experimental investigation of geometric effect on microfluidic diodicity. Proceeding of the fifth International conference on microchannels and minichannels ICNMM2007-30074, June 18–20, 2007, Puebla, Mexico

  • Fadl A, Zhang Z, Geller S, Tölke J, Krafczyk M, Meyer D (2009) The effect of the microfluidic diodicity on the efficiency of valve-less rectification micropumps using Lattice Boltzmann Method. Microsyst Technol 15:1379–1387

    Article  Google Scholar 

  • Feng G-H, Kim ES (2004) Micropump based on PZT unimorph and one-way parylene valves. J Micromech Microeng 14:429–435

    Article  Google Scholar 

  • Forster FK, Bardell L, Afromowitz MA, Sharma NR, Blanchard A (1995) Design, fabrication and testing of fixed-valve micro-pumps. Proc ASME Fluids Eng Div ASME 234:39–44

    Google Scholar 

  • Gamboa AR, Morris CJ, Forster F (2005) Improvements in fixed-valve micropump performance through shape optimization of valves. J Fluid Eng 127:339–346

    Article  Google Scholar 

  • Gerlach T (1997) Pumping gases by a silicon micro pump with dynamic passive valves. International conference on solid-state sensors and actuators, Chicago, June 16–19, 1997, Tranceducers’97-2A3.03

  • Gerlach T, Wurmus H (1995) Working principles and performance of the dynamic micropump. Sens Actuators A 50:135–140

    Article  Google Scholar 

  • Geschke O, Klank H, Tellemann P (2004) Microsystem engineering of lab-on-a-chip devices. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Hayamizu S, Higashino K, Fujii Y, Sando Y, Yamamoto K (2003) Development of a bi-directional valve-less silicon micro pump controlled by driving waveform. Sens Actuators A 103(1–2):83–87

    Google Scholar 

  • Huang P, Guasto JS, Breuer KS (2006) Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry. J Fluid Mech 566:447–464

    Article  MATH  Google Scholar 

  • Iverson B, Garimella S (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5:145–174

    Article  Google Scholar 

  • Jang LS, Morris C, Sharma N, Bardell R, Forster F (1999) Transport of particle-laden fluids through fixed-valve micropumps. Microelectromechanical systems (MEMS)-ASME 1999, MEMS, vol 1

  • Jang LS, Sharma N, Forster F (2000) The effect of particles on performance of fixed-valve micropumps. Micro Totao Anal Syst 283–286

  • Jang L-S, Kan W-H, Chen M-K, Chou Y-M (2009) Parameter extraction from BVD electrical model of PZT actuator of micropumps using time-domain measurement technique. Microfluid Nanofluid 7:559–568

    Article  Google Scholar 

  • Jiang XN, Zhou ZY, Huang XY, Li Y, Yang Y, Liu CY (1998) Micronozzle/diffuser flow and its application in microvalveless pumps. Sens Actuators A 70:81–87

    Article  Google Scholar 

  • Jianhui Z, Jizhuang L, Qixiao X (2007) Research on the valveless piezoelectric pump with Y-shape pipes. Front Mech Eng China 2(2):144–151

    Article  Google Scholar 

  • Kim MC, Kim S, Park JS, Park HD (2003) Numerical simulation of micromixing pulsatile micropump. J Ind Eng Chem 9(5):602–606

    Google Scholar 

  • Koch T, Evans AGR, Brunschweiler A (1998) The dynamic micropump driven with screen printed PZT actuator. J Micromech Microeng 8:119–122

    Article  Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:35–64

    Article  Google Scholar 

  • Lastochkin D, Zhou R, Wang P, Ben Y, Chang H-C (2004) Electrokinetic micropump and micromixer design based on ac faradic polarization. J Appl Phys 96:1730–1733

    Article  Google Scholar 

  • Loudon C, Tordesillas A (1998) The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow. J Theor Biol 191:63–78

    Article  Google Scholar 

  • Lucas N, Demming S, Jordan A, Sichler P, Büttgenbach S (2008) An improved method for doublesided moulding of PDMS. J Micromech Microeng 18:1–5

    Article  Google Scholar 

  • Morris CJ, Forster FK (2003) Low-order modeling of resonance for fixed-valve micropumps based on first principles. J Microelectromech Syst 12(3):325–334

    Article  Google Scholar 

  • Morris CJ, Forster FK (2004) Oscillatory flow in microchannels-comparison of exact and approximate impedance models with experiments. Exp Fluids 36:928–937

    Article  Google Scholar 

  • Mulling J, Usher T, Dessent B, Palmer J, Franzon P, Grant E, Kingon A (2001) Load characterization of high displacement piezoelectric actuators with various end conditions. Sens Actuators A 94:19–24

    Article  Google Scholar 

  • Nguyen N, Huang X, Chuan TK (2002) MEMS-micropumps: a review. J Fluid Eng 124:384–392

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1995) A valve-less planar fluid pump with two pump chambers. Sens Actuators A 46–47:549–556

    Google Scholar 

  • Olsson A, Stemme G, Stemme E (1996) Diffuser-element design investigation for valve-less pumps. Sens Actuators A 57:137–143

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1997a) Simulation studies of diffuser and nozzle elements for valve-less micropumps. Transducers 97, June 16–19, Chicago, USA

    Google Scholar 

  • Olsson A, Enoksson P, Stemme G, Stemme E (1997b) Micromachined flat-walled valve-less diffuser pumps. J Microelectromech Syst 6(2):161–166

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1999) A numerical design study of the valveless diffuser pump using a lumped-mass model. J Micromech Microeng 9:34–44

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (2000) Numerical and experimental studies of flat-walled diffuser elements for valve-less micro-pumps. Sens Actuators 84:165–175

    Article  Google Scholar 

  • Park J-H, Yokota S, Yoshida K (2002) A piezoelectric micropump using resonance drive with high power density. JSME Int J 45(2):502–509

    Article  Google Scholar 

  • Randall GC, Doyle PS (2005) Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices. Proc Natl Acad Sci USA 102(31):10813–10818

    Article  Google Scholar 

  • Richter M, Linnemann R, Woias P (1998) Robust design of gas and liquid micropumps. Sens Actuators 68:480–486

    Article  Google Scholar 

  • Rife JC, Bell MI, Horwitz JS, Kabler MN, Auyeung RCY, Kim WJ (2000) Miniature valveless ultrasonic pumps and mixers. Sens Actuators A 86:135–140

    Article  Google Scholar 

  • Rosa S, Pinho FT (2006) Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers. Int J Heat Fluid Flow 27:319–328

    Article  Google Scholar 

  • Sadrzadeh M, Amirilargani M, Shahidi K, Mohammadi T (2009) Gas permeation through a synthesized composite PDMS/PES membrane. J Memb Sci 342:236–250

    Article  Google Scholar 

  • Sheen HJ, Hsu CJ, Wu TH, Chu HC, Chang CC, Lei U (2007) Experimental study of flow characteristics and mixing performance in a PZT self-pumping micromixer. Sens Actuators A 139:237–244

    Article  Google Scholar 

  • Shen C-Y, Liu H-K (2008) Fabrication and drive test of piezoelectric PDMS valveless micro pump. J Chin Inst Eng 31(4):615–623

    Google Scholar 

  • Singh A, Freeman BD, Pinnau I (1998) Pure and mixed gas acetone/nitrogen permeation properties of polydimethylsiloxane [PDMS]. J Polym Sci B Polym Phys 36:289–301

    Article  Google Scholar 

  • Singhal V, Garimella SV, Murthy J (2004) Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps. Sens Actuators A 113:226–235

    Article  Google Scholar 

  • Stemme E, Stemme G (1993) A valve-less diffuser/nozzle based fluid pump. Sens Actuators A 39:159–167

    Article  Google Scholar 

  • Sun CL, Huang K (2006) Numerical characterization of the flow rectification of dynamic microdiffusers. J Micromech Microeng 16:1331–1339

    Article  Google Scholar 

  • Tracey MC, Johnston ID, Davis JB, Tan CKL (2006) Dual independent displacement-amplified micropumps with a single actuator. J Micromech Microeng 16:1444–1452

    Article  Google Scholar 

  • Tremblay P, Savard M, Vermette J, Paquin R (2006) Gas permeability, diffusivity and solubility of nitrogen, helium, methane, carbon dioxide and formaldehyde in dense polymeric membranes using a new on-line permeation apparatus. J Membr Sci 282:245–256

    Article  Google Scholar 

  • Uchida S (1956) The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe. ZAMP 7:403–422

    Article  MATH  MathSciNet  Google Scholar 

  • Ullmann A (1998) The piezoelectric valve-less pump-performance enhancement analysis. Sens Actuators A 69:97–105

    Article  Google Scholar 

  • van der Wijngaart W, Andersson H, Enoksson P, Noren K, Stemme G (2000) The first self-priming and bi-directional valve-less diffuser micropump for both liquid and gas. MEMS 2000, 23–27 Jan 2000, Miyazaki, Japan, pp 674–679

  • Wang Y, Hsu J, Kuo P, Lee Y (2009a) Loss characterization and flow rectification property of diffuser valves for micropumps application. Int J Heat Mass Transf 52:328–336

    Article  MATH  Google Scholar 

  • Wang C-T, Leu T-S, Sun J-M (2009b) Optimal design and operation for a No-Moving-Parts-Valve (NMPV) micro pump with a diffuser width of 500 μm. Sensors 9:3666–3678

    Article  Google Scholar 

  • White FM (1999) Fluid mechanics. WCB/McGraw-Hill, Singapore

    Google Scholar 

  • Yamahata C, Vandevyver C, Lacharme F, Izewska P, Vogel H, Freitag R, Gijs M (2005) Pumping of mammalian cells with a nozzle-diffuser micropump. Lap on a Chip 15:1083–1088

    Article  Google Scholar 

  • Yang Z, Goto H, Matsumoto M, Yada T (1998) Micromixer incorporated with piezoelectrically driven valveless micropump, Micro Total Analysis Systems ’98. Kluwer Academic Publishers, Dordrecht, pp 177–180

  • Yang K, Chen I, Shew B, Wang C (2004) Investigation of the flow characteristics within a micronozzle/diffuser. J Micromech Microeng 14:26–31

    Article  Google Scholar 

  • Yang H, Tsai T-H, Hu C-C (2008) Portable valve-less peristaltic micropump design and fabrication. DTIP of MEMS & MOEMS, 9–11 April, French Riviera, France

  • Yi M, Bau HH (2003) The kinematics of bend-induced mixing in micro-conduits. Int J Heat Fluid Flow 24:645–656

    Article  Google Scholar 

  • Yoon J, Choi J, Lee H, Kim M (2007) A valveless micropump for bidirectional applications. Sensors Actuators A 135:833–838

    Article  Google Scholar 

Download references

Acknowledgment

The research described in this paper was supported by the National Science Foundation (NSF), grant no.: OISE-0530203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Fadl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadl, A., Demming, S., Zhang, Z. et al. A multifunction and bidirectional valve-less rectification micropump based on bifurcation geometry. Microfluid Nanofluid 9, 267–280 (2010). https://doi.org/10.1007/s10404-009-0544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0544-0

Keywords

Navigation