Skip to main content
Log in

The effect of the microfluidic diodicity on the efficiency of valve-less rectification micropumps using Lattice Boltzmann Method

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The efficiency of the valve-less rectification micropump depends primarily on the microfluidic diodicity (the ratio of the backward pressure drop to the forward pressure drop). In this study, different rectifying structures, including the conventional structures (nozzle/diffuser and Tesla structures), were investigated at very low Reynolds numbers (between 0.2 and 60). The rectifying structures were characterized with respect to their design, and a numerical approach was illustrated to calculate the diodicity for the rectifying structures. In this study, the microfluidic diodicity was evaluated numerically for different rectifying structures including half circle, semicircle, heart, triangle, bifurcation, nozzle/diffuser, and Tesla structures. The Lattice Boltzmann Method (LBM) was utilized as a numerical method to simulate the fluid flow in the microscale. The results suggest that at very low Reynolds number flow, rectification and multifunction micropumping may be achievable by using a number of the presented structures. The results for the conventional structures agree with the reported results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bardell R, Sharma R, Forster FK, Afromowitz MA, Penney R (1997) Designing high-performance micro-pumps based on no-moving-parts valves. In: Lin L, Goodson KE et al (eds) Microelectromechanical systems (MEMS), Proceedings of the ASME IMECE (International Mechanical Engineering Congress and Exposition) vol DSC-234/HTD-354. Dallas, pp 47–53

  • Benzi R, Succi S, Verassola M (1998) The lattice Boltzmann equation-theory and application. Future Generation Computer Systems 14:209–214

    Article  Google Scholar 

  • Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases, I. Small amplitude processes in charged and neutral one-component system. Phys Rev 94:511–525

    Article  MATH  Google Scholar 

  • Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of a Boltzmann lattice fluid with boundaries. Phys Fluids 13:345–3452

    Article  Google Scholar 

  • Chen Y, Kang S, Wu L, Lee S (2008) Fabrication and investigation of PDMS micro-diffuser/nozzle. J Mater Process Technol 198:478–484

    Article  Google Scholar 

  • Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • d’Humieres D, Ginzburg I (2002) Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil Trans R Soc Lond A 360:437–451

    Article  MATH  MathSciNet  Google Scholar 

  • Foster FK, Bardell L, Afromowitz MA, Sharma NR, Blanchard A (1995) Design, fabrication and testing of fixed-valve micro-pumps. Proceeding of the ASME Fluids Engineering Division, ASME 234:39–44

  • Freudiger S (2009) Entwicklung eines parallelen, adaptiven, komponentenbasierten Strömungskerns für hierarchische Gitter auf Basis des Lattice-Boltzmann-Verfahrens. Ph. D. dissertation. Technische Universität Braunschweig, Braunschweig, Germany

  • Gamboa AR, Morris CJ, Forster F (2005) Improvements in fixed-valve micropump performance through shape optimization of valves. J Fluid Eng 127:339–346

    Article  Google Scholar 

  • Gerlach T, Wurmus H (1995) Working principles and performance of the dynamic micropump. Sens Actuators A 50:135–140

    Article  Google Scholar 

  • Gerlach T, Schuenemann M, Wurmus H (1995) A new micropump principles of the reciprocating types using pyramidic microflow channel as passive valves. J Micromech Microeng 5:199–201

    Article  Google Scholar 

  • Geschke O, Klank H, Tellemann P (2004) Microsystem engineering of Lab-on-a-Chip devices. Wiley-VCH, Weinheim

    Google Scholar 

  • Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics: a review. J Micromech Microeng 3:168–182

    Article  Google Scholar 

  • Jiang XN, Zhou ZY, Huang XY, Li Y, Yang Y, Liu CY (1998) Micronozzle/diffuser flow and its application in microvalveless pumps. Sens Actuators A 70:81–87

    Article  Google Scholar 

  • Koch T, Evans AGR, Brunschweiler A (1998) The dynamic micropump driven with screen printed PZT actuator. J Micromech Microeng 8:119–122

    Article  Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:35–64

    Article  Google Scholar 

  • Mei R, Yu D, Shyy W (2002) Force evaluation in the lattice Boltzmann method involving curved geometry. NASA/CR-2002-211622, ICASE Report No. 2002-22

  • Nguyen N, Huang X, Chuan TK (2002) MEMS-micropumps: a review. J Fluid Eng 124:384–392

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1995) A valve-less planar fluid pump with two pump chambers. Sens Actuators A 46–47:549–556

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1996) Diffuser-element design investigation for valve-less pumps. Sens Actuators A 57:137–143

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1997a) Simulation studies of diffuser and nozzle elements for valve-less micropumps. Transducers 97, June 16–19, Chicago, USA

    Google Scholar 

  • Olsson A, Enoksson P, Stemme G, Stemme E (1997b) Micromachined flat-walled valve-less diffuser pumps. J Microelectromech Syst 6(2):161–166

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (2000) Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps. Sens Actuators 84:165–175

    Article  Google Scholar 

  • Pingen G (2005) Topology and shape optimization of fluid-structure interaction problems. Thesis proposal, Department of Aerospace Engineering Sciences, University of Colorado

  • Qian YH, d’Humieres D, Lallemand P (1992) Lattice BGK models for Navier Stokes fluid flow. Europhys Lett 17:479–484

    Article  MATH  Google Scholar 

  • Rosa S, Pinho FT (2006) Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers. Int J Heat Fluid Flow 27:319–328

    Article  Google Scholar 

  • Runstadler PW, Dolan FX, Dean RC (1975) Diffuser data book. Creare, New Hampshire

    Google Scholar 

  • Schäfer M, Turek S (1996) Benchmark computations of laminar flow around a cylinder. In: Schäfer E (ed) Flow simulation with high-performance computers II. DFG priority research program results 1993–1995. Notes in Numerical Fluid Mechanics, vol 52. Vieweg, Wiesbaden, pp 547–566

    Google Scholar 

  • Singhal V, Garimella SV, Raman A (2004a) Microscale pumping technologies for microchannel cooling systems. App Mech Rev 57(3):191–221

    Article  Google Scholar 

  • Singhal V, Garimella SV, Murthy J (2004b) Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps. Sens Actuators A 113:226–235

    Article  Google Scholar 

  • Stemme E, Stemme G (1993) A valve-less diffuser/nozzle based fluid pump. Sens Actuators A 39:159–167

    Article  Google Scholar 

  • Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Van de Pol FCM (1989) A pump based on micro-engineering techniques. Thesis, University of Twente, Enschede, The Netherlands

  • Wang Y, Hsu J, Kuo P, Lee Y (2009) Loss characterization and flow rectification property of diffuser valves for micropumps application. Int J Heat Mass Transf 52:328–336

    Article  MATH  Google Scholar 

  • White FM (1999) Fluid mechanics. WCB/McGraw-Hill, Singapore

    Google Scholar 

  • Yang K, Chen I, Shew B, Wang C (2004) Investigation of the flow characteristics within a micronozzle/diffuser. J Micromech Microeng 14:26–31

    Article  Google Scholar 

  • Yu D, Mei R, Luo L, Shyy W (2003) Viscous flow computations with the method of lattice Boltzmann equation. Progress Aerosp Sci 39:329–367

    Article  Google Scholar 

Download references

Acknowledgments

The research described, in this paper, was supported by the National Science Foundation (NSF), Grant No.: OISE-0530203. Additionally, we are grateful for the technical assistance of Christian Janßen and Sören Freudiger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Fadl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadl, A., Zhang, Z., Geller, S. et al. The effect of the microfluidic diodicity on the efficiency of valve-less rectification micropumps using Lattice Boltzmann Method. Microsyst Technol 15, 1379–1387 (2009). https://doi.org/10.1007/s00542-009-0901-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-009-0901-7

Keywords

Navigation