Skip to main content
Log in

Novel continuous particle sorting in microfluidic chip utilizing cascaded squeeze effect

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This article presents a novel technique for the continuous sorting and collection of microparticles in a microfluidic chip using a cascaded squeeze effect. In the proposed approach, microparticles of different sizes are separated from the sample stream using sheath flows and are then directed to specific side channels for collection. The sheath flows required to separate the particles are generated using a single high voltage supply integrated with a series of variable resistors designed to create electric fields of different intensities at different points of the microchip. Numerical simulations are performed to analyze the electrical potential contours and flow streamlines within the microchannel. Experimental trials show that the microchip is capable of continuously separating microparticles with diameters of 5, 10 and 20 μm, respectively. To further evaluate the performance of the microchip, a sample composed of yeast cells and polystyrene beads is sorted and collected. The results indicate that the microchip achieves a recovery ratio of 87.7% and a yield ratio of 94.1% for the yeast cells and therefore attains a comparable performance to that of a large-scale commercial flow cytometer. Importantly, the high performance of the microchip is achieved without the need for a complex control system or for sophisticated actuation mechanisms such as embedded microelectrodes, ultrasonic generators, or micropumps, and so forth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20:101702

    Article  Google Scholar 

  • Brown M, Wittwer C (2000) Flow cytometry: principles and clinical applications in hematology. Clin Chem 46:1221–1229

    Google Scholar 

  • Chen D, Du H (2007) A dielectrophoretic barrier-based microsystem for separation of microparticles. Microfluid Nanofluid 3:603–610

    Article  Google Scholar 

  • Chen HT, Wang YN (2008) Fluorescence detection in a micro flow cytometer without on-chip fibers. Microfluid Nanofluid 4:689–694

    Article  Google Scholar 

  • Choi S, Song S, Choi C, Park JK (2007) Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7:1532–1538

    Article  Google Scholar 

  • Chung TD, Kim HC (2007) Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis 28:4511–4520

    Article  Google Scholar 

  • Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104:18892–18897

    Article  Google Scholar 

  • Di Carlo D, Edd JF, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80:2204–2211

    Article  Google Scholar 

  • Durr M, Kentsch J, Muller T, Schnelle T, Stelzle M (2003) Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis 24:722–731

    Article  Google Scholar 

  • Ferrari BC, Oregaard G, Sørensen SJ (2004) Recovery of GFP-labeled bacteria for culturing and molecular analysis after cell sorting using a benchtop flow cytometer. Microbial Ecol 48:239–245

    Article  Google Scholar 

  • Fu LM, Lin CH (2007) A rapid DNA digestion system. Biomed Microdevices 9:277–286

    Article  Google Scholar 

  • Fu AY, Spence C, Scherer A, Arnold FH, Quake SR (1999) A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 17:1109–1111

    Article  Google Scholar 

  • Fu LM, Yang RJ, Lee GB, Pan YJ (2003) Multiple injection techniques for microfluidic sample handling. Electrophoresis 24:3026–3032

    Article  Google Scholar 

  • Fu LM, Lee GB, Lin YH, Yang RJ (2004a) Manipulation of microparticles using new modes of travelling-wave-dielectrophoretic forces: numerical simulation and experiments. IEEE-ASME Trans Mechatron 9:377–383

    Article  Google Scholar 

  • Fu LM, Yang RJ, Lin CH, Pan YJ, Lee GB (2004b) Electrokinetically-driven micro flow cytometers with integrated optical waveguides for on-line cell/particle detection. Anal Chim Acta 507:163–169

    Article  Google Scholar 

  • Fu LM, Yang RJ, Lin CH, Chien YS (2005) A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency. Electrophoresis 26:1814–1824

    Article  Google Scholar 

  • Fu LM, Tsai CH, Lin CH (2008) A high-discernment micro-flow cytometer with micro-weir structure. Electrophoresis 29:1874–1878

    Article  Google Scholar 

  • Gast FU, Dittrich PS, Schwille P, Weigel M, Mertig M, Opitz J, Queitsch U, Diez S, Lincoln B, Wottawah F, Schinkinger S, Guck J, Käs J, SmolinskiJ SalchertK, Werner C, Duschl C, Jäger MS, Uhlig K, Geggier P, Howitz S (2006) The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology. Microfluid Nanofluid 2:21–36

    Article  Google Scholar 

  • Hashimoto M, Garstecki P, Whitesides GM (2007) Synthesis of composite emulsions and complex foams with the use of microfluidic flow-focusing devices. Small 3:1792–1802

    Article  Google Scholar 

  • Holmes D, Green NG, Morgan H (2003) Microdevices for dielectrophoretic flow-through cell separation. IEEE Eng Med Biol 22:85–90

    Article  Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990

    Article  Google Scholar 

  • Hunt HC, Wilkinson JS (2008) Optofluidic integration for microanalysis. Microfluid Nanofluid 4:53–79

    Article  Google Scholar 

  • Kang JH, Park JK (2007) Magnetophoretic continuous purification of single-walled carbon nanotubes from catalytic impurities in a microfluidic device. Small 3:1784–1791

    Article  Google Scholar 

  • Lee GB, Lin CH, Lee GH, Lin YF (2005) On the surface modification of microchannels for micro capillary electrophoresis chips. Electrophoresis 26:4616–4624

    Article  Google Scholar 

  • Lim CT, Zhang Y (2007) Novel dome-shaped structures for high-efficiency patterning of individual microbeads in a microfluidic device. Small 3:573–579

    Article  Google Scholar 

  • Lin CH, Lee GB (2003) Micromachined flow cytometers with embedded etched optic fibers for optical detection. J Micromech Microeng 13:447–453

    Article  MathSciNet  Google Scholar 

  • Lin CH, Lee GB, Lin YH, Chang GL (2001) A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. J Micromech Microeng 11:726–732

    Article  Google Scholar 

  • Lin CH, Lee GB, Fu LM, Hwey BH (2004) Vertical focusing device utilizing dielectrophoretic force and its application on microflow cytometer. J Microelectromech Syst 13:923–932

    Article  Google Scholar 

  • Lin CC, Chen A, Lin CH (2008a) Microfluidic cell counter/sorter utilizing multiple particle tracing technique and optically switching approach. Biomed Microdevices 10:55–63

    Article  MathSciNet  Google Scholar 

  • Lin CH, Wang JH, Fu LM (2008b) Improving the separation efficiency of DNA biosamples in capillary electrophoresis microchips using high-voltage pulsed DC electric fields. Microfluid Nanofluid 5:403–410

    Article  Google Scholar 

  • McCloskey KE, Chalmers JJ, Zborowski M (2003) Magnetic cell separation: characterization of magnetophoretic mobility. Anal Chem 75:6868–6874

    Article  Google Scholar 

  • Moon J, Kim SH, Cho J (2006) Characterizations of natural organic matter as nano particle using flow field-flow fractionation. Colloid Surface A 287:232–236

    Article  Google Scholar 

  • Prikulis J, Svedberg F, Käll M, Enger J, Ramser K, Goksor M, Hanstorp D (2004) Optical spectroscopy of single trapped metal nanoparticles in solution. Nano Lett 4:115–118

    Article  Google Scholar 

  • Rodriguez-Trujillo R, Mills CA, Samitier J, Gomila G (2007) Low cost micro-Coulter counter with hydrodynamic focusing. Microfluid Nanofluid 3:171–176

    Article  Google Scholar 

  • Schrum DP, Culbertson CT, Jacobson SC, Ramsey JM (1999) Microchip flow cytometry using electrokinetic focusing. Anal Chem 71:4173–4177

    Article  Google Scholar 

  • Seo D, Agca Y, Feng ZC, Critser JK (2007) Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure. Microfluid Nanofluid 3:561–570

    Article  Google Scholar 

  • Suzuki H, Ho CM, Kasagi N (2004) A chaotic mixer for magnetic bead-based micro cell sorter. J Microelectromech Syst 13:779–790

    Article  Google Scholar 

  • Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5:778–784

    Article  Google Scholar 

  • Tsai CH, Chen HT, Wang YN, Lin CH, Fu LM (2007) Capabilities and limitations of 2-dimensional and 3-dimensional numerical methods in modeling the fluid flow in sudden expansion microchannels. Microfluid Nanofluid 3:13–18

    Article  Google Scholar 

  • Tsai CH, Hou HH, Fu LM (2008) An optimal three-dimensional focusing technique for micro-flow cytometers. Microfluid Nanofluid 5:827–836

    Article  Google Scholar 

  • Wang MM, Tu E, Raymond DE, Yang JM, Zhang HC, Hagen N, Dees B, Mercer EM, Forster AH, Kariv I, Marchand PJ, Butler WF (2005) Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23:83–87

    Article  Google Scholar 

  • Yamada M, Seki M (2006) Microfluidic particle sorter employing flow splitting and recombinig. Anal Chem 78:1357–1362

    Article  Google Scholar 

  • Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76:5465–5471

    Article  Google Scholar 

  • Yang AS, Hsieh WH (2007) Hydrodynamic focusing investigation in a micro-flow cytometer. Biomed Microdevices 9:113–122

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support provided by the National Science Council in Taiwan (NSC97-2221-E-110-018-MY3 and NSC97-2320-B-020 -001-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lung-Ming Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CH., Lee, CY., Tsai, CH. et al. Novel continuous particle sorting in microfluidic chip utilizing cascaded squeeze effect. Microfluid Nanofluid 7, 499 (2009). https://doi.org/10.1007/s10404-009-0403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-009-0403-z

Keywords

Navigation