Skip to main content
Log in

The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We describe a novel microfluidic perfusion system for high-resolution microscopes. Its modular design allows pre-coating of the coverslip surface with reagents, biomolecules, or cells. A poly(dimethylsiloxane) (PDMS) layer is cast in a special molding station, using masters made by photolithography and dry etching of silicon or by photoresist patterning on glass or silicon. This channel system can be reused while the coverslip is exchanged between experiments. As normal fluidic connectors are used, the link to external, computer-programmable syringe pumps is standardized and various fluidic channel networks can be used in the same setup. The system can house hydrogel microvalves and microelectrodes close to the imaging area to control the influx of reaction partners. We present a range of applications, including single-molecule analysis by fluorescence correlation spectroscopy (FCS), manipulation of single molecules for nanostructuring by hydrodynamic flow fields or the action of motor proteins, generation of concentration gradients, trapping and stretching of live cells using optical fibers precisely mounted in the PDMS layer, and the integration of microelectrodes for actuation and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AC/DC:

Alternating current/direct current

AMPPNP:

Adenosine 5′-(β,γ-imido)triphosphate

ASE:

Advanced silicon etching

ATP:

Adenosine 5′-triphosphate

cDNA:

Complementary (or copy) DNA

DNA:

Deoxyribonucleic acid

ECM:

Extracellular matrix

FCS:

Fluorescence correlation spectroscopy

FITC:

Fluoresceine isothiocyanate

FN:

Fibronectin

FRET:

Fluorescence resonance energy transfer

GFP:

Green fluorescent protein

Hz:

Hertz (s−1)

kbp:

Kilobase pairs

μTAS:

Micro total analysis system

nDEP:

Negative dielectrophoresis

nM:

Nanomol/liter

nN:

Nanonewton

OD:

Outer diameter

PCB:

Printed circuit board

PDMS:

Poly(dimethylsiloxane)

PMMA:

Poly(methylmethacrylate)

PNIPAAm:

Poly(N-isoproypyl acrylamide)

POMA:

Poly(octadecene-alt-maleic anhydride)

PTFE:

Poly(tetrafluoroethylene)

RNA:

Ribonucleic acid

TIRF:

Total internal reflection fluorescence

UNF:

Universal National Fine Thread

References

  • Allemand JF, Bensimon D, Jullien L, Bensimon A, Croquette V (1997) pH-dependent specific binding and combing of DNA. Biophys J 73:2064–2070

    PubMed  Google Scholar 

  • Alon R, Feigelson S (2002) From rolling to arrest on blood vessels: leukocyte tap dancing on endothelial integrin ligands and chemokines at sub-second contacts. Semin Immunol 14:93–104

    Article  PubMed  Google Scholar 

  • Andersson H, van den Berg A (2003) Microfluidic devices for cellomics: a review. Sens Actuators B Chem 92:315–325

    Article  Google Scholar 

  • Böhm KJ, Stracke R, Baum M, Zieren M, Unger E (2000) Effect of temperature on kinesin-driven microtubule gliding and kinesin ATPase activity. FEBS Lett 466:59–62

    Article  PubMed  Google Scholar 

  • Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778

    Article  PubMed  Google Scholar 

  • Brunner C, Ernst KH, Hess H, Vogel V (2004) Lifetime of biomolecules in polymer-based hybrid nanodevices. Nanotechnology 15:S540–S548

    Article  Google Scholar 

  • Cesaro-Tadic S, Dernick G, Juncker D, Buurman G, Kropshofer H, Michel B, Fattinger C, Delamarche E (2004) High-sensitivity immunoassays for tumor necrosis factor α using microfluidic systems. Lab Chip 4:563–569

    Article  PubMed  Google Scholar 

  • Dertinger SKW, Chiu DT, Li Jeon N, Whitesides GM (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73:1240–1246

    Article  Google Scholar 

  • Dertinger SKW, Jiang X, Li Z, Murthy VN, Whitesides GM (2002) Gradients of substrate-bound laminin orient axonal specification of neurons. Proc Natl Acad Sci USA 99:12542–12547

    Article  PubMed  Google Scholar 

  • Diez S, Reuther C, Dinu C, Seidel R, Mertig M, Pompe W, Howard J (2003) Stretching and transporting DNA molecules using motor proteins. Nano Lett 3:1251–1254

    Article  Google Scholar 

  • Dittrich PS, Schwille P (2003) An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. Anal Chem 75:5767–5774

    Article  PubMed  Google Scholar 

  • Dittrich PS, Müller B, Schwille P (2004) Studying reaction kinetics by simultaneous FRET and cross-correlation analysis in a miniaturized continuous flow reactor. Phys Chem Chem Phys 6:4416–4420

    Article  Google Scholar 

  • Dittrich PS, Jahnz M, Schwille P (2005) A new embedded process for compartmentalized cell-free protein expression and on-line detection in microfluidic devices. ChemBioChem 6:811–814

    Article  PubMed  Google Scholar 

  • Duschl C, Geggier P, Jäger M, Stelzle M, Müller T, Schnelle T, Fuhr G (2004) Versatile chip-based tools for the controlled manipulation of microparticles in biology using high frequency electromagnetic fields. In: Andersson H, van den Berg A (eds) Lab-on-chips for cellomics: micro and nanotechnologies for life science. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eigen M, Rigler R (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci USA 91:5740–5747

    Article  PubMed  Google Scholar 

  • Elson EL (1988) Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Biophys Chem 17:397–430

    Article  PubMed  Google Scholar 

  • Fiedler S, Hagedorn R, Schnelle T, Richter E, Wagner B, Fuhr G (1995) Diffusional electrotitration: generation of pH gradients over arrays of ultramicroelectrodes detected by fluorescence. Anal Chem 67:820–828

    Article  Google Scholar 

  • Fu AY, Spence C, Scherer A, Arnold FH, Quake SR (1999) A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 17:1109–1111

    Article  PubMed  Google Scholar 

  • Georgiou G (2001) Analysis of large libraries of protein mutants using flow cytometry. Adv Protein Chem 55:293–315

    Article  Google Scholar 

  • Grier DG (2003) A revolution in optical manipulation. Nature 424:810–816

    Article  PubMed  Google Scholar 

  • Guck J, Ananthakrishnan R, Moon TJ, Cunningham CC, Käs J (2000) Optical deformability of soft biological dielectrics. Phys Rev Lett 84:5451–5454

    Article  PubMed  Google Scholar 

  • Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Käs J (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 81:767–784

    PubMed  Google Scholar 

  • Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Käs J, Ulvick S, Bilby C (2005) Optical deformability as inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698

    Article  PubMed  Google Scholar 

  • Hess H, Clemmens J, Qin D, Howard J, Vogel V (2001) Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Lett 1:235–239

    Article  Google Scholar 

  • Hess H, Howard J, Vogel V (2002a) A piconewton forcemeter assembled from microtubules and kinesins. Nano Lett 2:1113–1115

    Article  Google Scholar 

  • Hess H, Clemmens J, Howard J, Vogel V (2002b) Surface imaging by self-propelled nanoscale probes. Nano Lett 2:113–116

    Article  Google Scholar 

  • Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Sunderland

    Google Scholar 

  • Huang H, Kamm RD, Lee RT (2004) Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol 287:C1–C11

    Article  PubMed  Google Scholar 

  • Knoblauch M, Peters WS (2004) Forisomes, a novel type of Ca2+-dependent contractile protein motor. Cell Motil Cytoskeleton 58:137–142

    Article  PubMed  Google Scholar 

  • Knoblauch M, Noll GA, Müller T, Prüfer D, Schneider-Hüther I, Scharner D, van Bel JE, Peters WS (2003) ATP-independent contractile proteins from plants. Nat Mater 2:600–603

    Article  PubMed  Google Scholar 

  • Kobayashi J, Mori Y, Okamoto K, Akiyama R, Ueno M, Kitamori T, Kobayashi S (2004) A microfluidic device for conducting gas-liquid-solid hydrogenation reactions. Science 304:1305–1308

    Article  PubMed  Google Scholar 

  • Lärmer F, Schilp A (1994) Method of anisotropically etching silicon. US Patent No. 5501893, German Patent DE4241045

  • Larson RG, Perkins TT, Smith DE, Chu S (1997) Hydrodynamics of a DNA molecule in a flow field. Phys Rev E 55:1794–1797

    Article  Google Scholar 

  • Li Jeon N, Dertinger SKW, Chiu DT, Choi IS, Stroock AD, Whitesides GM (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316

    Article  Google Scholar 

  • Lincoln B, Erickson HM, Schinkinger S, Wottawah F, Mitchell D, Ulvick S, Bilby C, Guck J (2004) Deformability-based flow cytometry. Cytometry 59A:203–209

    Article  PubMed  Google Scholar 

  • Lipman EA, Schuler B, Bakajin O, Eaton WA (2003) Single-molecule measurement of protein folding kinetics. Science 301:1233–1235

    Article  PubMed  Google Scholar 

  • Madge D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    Article  Google Scholar 

  • Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem 1:244–248

    Article  Google Scholar 

  • Manz A, Fettinger JC, Verpoorte E, Lüdi H, Widmer HM, Harrison DJ (1991) Micromachining of monocrystralline silicon and glass for chemical analysis systems: a look into next century’s technology or just a fashionable craze? Trends Anal Chem 10:144–149

    Article  Google Scholar 

  • Maubach G, Csáki A, Seidel R, Mertig M, Pompe W, Born D, Fritzsche W (2003) Controlled positioning of a DNA molecule in an electrode setup based on self-assembly and microstructuring. Nanotechnology 14:1055–1056

    Article  Google Scholar 

  • Mertig M, Pompe W (2004) Biomimetic fabrication of DNA-based metallic nanowires and networks. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology: concepts, applications and perspectives. Wiley-VCH, Weinheim, pp 256–277

    Google Scholar 

  • Mertig M, Colombi Ciacchi L, Seidel R, Pompe W, De Vita A (2002) DNA as a selective metallization template. Nano Lett 2:841–844

    Article  Google Scholar 

  • Müller T, Gradl G, Howitz S, Shirley S, Schnelle T, Fuhr G (1999) A 3-D microelectrode system for handling and caging single cells and particles. Biosens Bioelectron 14:247–256

    Article  Google Scholar 

  • Pompe T, Zschoche S, Herold N, Salchert K, Gouzy MF, Sperling C, Werner C (2003) Maleic anhydride copolymers—a versatile platform for molecular biosurface engineering. Biomacromolecules 4:1072–1079

    Article  PubMed  Google Scholar 

  • Prots I, Stracke R, Unger E, Böhm KJ (2003) Isopolar microtubule arrays as a tool to determine motor protein directionality. Cell Biol Int 27:251–253

    Article  PubMed  Google Scholar 

  • Richter J, Mertig M, Pompe W, Mönch I, Schackert HK (2001) Construction of highly conductive nanowires on a DNA template. Appl Phys Lett 78:536–538

    Article  Google Scholar 

  • Richter A, Kuckling D, Howitz S, Gehring T, Arndt KF (2003) Electronically controlled microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12:748–753

    Article  Google Scholar 

  • Richter A, Howitz S, Kuckling D, Arndt KF (2004) Influence of volume phase transition phenomena on the behavior of hydrogel-based valves. Sens Actuators B Chem 99:451–458

    Article  Google Scholar 

  • Ruardy TG, Schakenraad JM, van der Mei HC, Busscher HJ (1997) Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena. Surf Sci Rep 29:3–30

    Article  Google Scholar 

  • Schinkinger S, Wottawah F, Travis KA, Lincoln B, Guck J (2004) Feeling for cells with light. Proc SPIE Optical Trapping Optical Micromanipulation 5514:170–178

    Google Scholar 

  • Schnapp BJ, Crise B, Sheetz MP, Reese TS, Khan S (1990) Delayed start-up of kinesin-driven microtubule gliding following inhibition by adenosine 5′-[β,γ-imido]triphosphate. Proc Natl Acad Sci USA 87:10053–10057

    Article  PubMed  Google Scholar 

  • Scholey JM (1993) Motility assays for motor proteins (Methods in cell biology, vol 39). Academic Press, San Diego

    Google Scholar 

  • Seeman NC (1996) The design and engineering of nucleic acid nanoscale assemblies. Curr Opin Struct Biol 6:519–526

    Article  PubMed  Google Scholar 

  • Stracke P, Böhm KJ, Burgold J, Schacht HJ, Unger E (2000) Physical and technical parameters determining the functioning of a kinesin-based cell-free motor system. Nanotechnology 11:52–56

    Article  Google Scholar 

  • Van Vliet KJ, Bao G, Suresh S (2003) The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Materialia 51:5881–5905

    Article  Google Scholar 

  • Wirtz D (1995) Direct measurement of the transport properties of a single DNA molecule. Phys Rev Lett 75:2436–2439

    Article  PubMed  Google Scholar 

  • Wottawah F, Schinkinger S, Lincoln B, Ananthakrishnan R, Romeyke M, Guck J, Käs J (2005) Optical rheology of biological cells. Phys Rev Lett 94:098103

    Article  PubMed  Google Scholar 

  • Yan H, Park SH, Finkelstein G, Reif JH, LaBean T (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884

    Article  PubMed  Google Scholar 

  • Zimmermann RM, Cox EC (1994) DNA stretching on functionalized gold surfaces. Nucleic Acids Res 22:492–497

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Fuhr (Fh-IBMT) and G. Gradl (Evotec Technologies GmbH, Berlin) and their coworkers for cooperation in the field of nDEP and cell sorting, M. Knoblauch (Fh-IME, Aachen) for the supply of forisomes, W. Pompe (TU Dresden) and J. Howard (MPI-CBG Dresden) for useful discussions on nanostructuring, and C. Wenzel and K. Richter (TU Dresden) for their help with ASE. This work was funded by Grants from the German Ministry of Education, Science, Research, and Technology (BMBF) (Grant No. 0314025 and 0314036), the Deutsche Forschungsgemeinschaft (FOR 335), the Saxonian Ministry of Science and Arts (SMWK), and the Sächsische Aufbaubank (SAB) (Grant No. 6988/1099 and 9890/1519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. -U. Gast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gast, F.U., Dittrich, P.S., Schwille, P. et al. The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology. Microfluid Nanofluid 2, 21–36 (2006). https://doi.org/10.1007/s10404-005-0047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-005-0047-6

Keywords

Navigation