Skip to main content

Advertisement

Log in

Detection of foodborne pathogens using bioconjugated nanomaterials

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This review focuses on applying nanotechnology to foodborne pathogen detection. Because of low infectious doses for most foodborne pathogens, the rapid and sensitive detection methods are essential to ensure the food safety. The advances in the development of nanomaterials have stimulated worldwide research interests in their applications for bioanalysis. The conjugation of biomolecules with nanomaterials is the foundation of nano-biorecognition. A variety of strategies including antibody–antigen, adhesin–receptor, antibiotic, and complementary DNA sequence recognitions have been explored for specific recognition between target bacterial cells and bio-functionalized nanomaterials. The incorporation of these bio-functionalized nanomaterials into current pathogen detection methods has led to rapid and nearly real-time pathogen detection (as short as a few minutes), improved sensitivity (single bacterial cell), and simultaneous detection of multiple micro-organisms from either nutrient broth, liquid or solid food products, or biofilms. The unique properties of nanomaterials in physical strength, chemical reactivity, electrical conductance, magnetism and optical effects make them promising in the development of practical biosensors with emphasis on device portability and simplicity in sample preparation, and the improvement of current pathogen detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amagliani G, Omiccioli E, Campo A, Bruce IJ, Brandi G, Magnani M (2006) Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples. J Appl Microbiol 100:375–383

    Article  Google Scholar 

  • Basu M, Seggerson S, Henshaw J, Jiang J, del A Cordona R, Lefave C, Boyle PJ, Miller A, Pugia M, Basu S (2004) Nano-biosensor development for bacterial detection during human kidney infection: use of glycoconjugate-specific antibody-bound gold NanoWire arrays (GNWA). Glycoconj J 21:487–496

    Article  Google Scholar 

  • Beckman R, Johnston-Halperin E, Luo Y, Green JE, Heath JR (2005) Bridging dimensions: demultiplexing ultrahigh-density nanowire circuits. Science 310:465–468

    Article  Google Scholar 

  • de Boer E, Beumer RR (1999) Methodology for detection and typing of foodborne microorganisms. Int J Food Microbiol 50:119–130

    Article  Google Scholar 

  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Article  Google Scholar 

  • Call DR (2005) Challenges and opportunities for pathogen detection using DNA microarrays. Crit Rev Microbiol 31(2):91–99

    Article  Google Scholar 

  • Campion A, Kambhampati P (1998) Surface-enhanced raman scattering. Chem Soc Rev 27:241–250

    Article  Google Scholar 

  • Centers for Disease Control and Prevention. (2007) Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food—10 states, United States, 2006. MMWR 56:336–339

    Google Scholar 

  • Chan WC (2006) Bionanotechnology progress and advances. Biol Blood Marrow Transplant 12:87–91

    Article  Google Scholar 

  • Chang HC (2007) Nanobead electrokinetics: the enabling microfluidic platform for rapid multi-target pathogen detection. AIChe J 53:2486–2492

    Article  Google Scholar 

  • Chen CS, Durst RA (2006) Simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes with an array-based immunosorbent assay using universal protein G-liposomal nanovesicles. Talanta 69:232–238

    Article  Google Scholar 

  • Chen CS, Baeumner AJ, Durst RA (2005) Protein G-liposomal nanovesicles as universal reagents for immunoassays. Talanta 67:205–211

    Article  Google Scholar 

  • Chen X, Tam UC, Czlapinski JL, Lee GS, Rabuka D, Zettl A, Bertozzi CR (2006) Interfacing carbon nanotubes with living cells. J Am Chem Soc 128:6292–6293

    Article  Google Scholar 

  • Chmielewski RAN, Frank JF (2003) Biofilm formation and control in food processing facilities. Comp Rev Food Sci Food Safety 2:22–32

    Article  Google Scholar 

  • Churchill RL, Lee H, Hall JC (2006) Detection of Listeria monocytogenes and the toxin listeriolysin O in food. J Microbiol Methods 64(2):141–170

    Article  Google Scholar 

  • Deisingh AK, Thompson M (2004) Biosensors for the detection of bacteria. Can J Microbiol 50(2):69–77

    Article  Google Scholar 

  • Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298:1006–1009

    Article  Google Scholar 

  • Disney MD, Zheng J, Swager TM, Seeberger PH (2004) Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J Am Chem Soc 126:13343–13346

    Article  Google Scholar 

  • Donnelly CW (2001) Listeria monocytogenes: a continuing challenge. Nutr Rev 59:183–194

    Google Scholar 

  • Doyle ME (2006) Nanotechnology: a brief literature review. Food Research Institute Briefings, June 2006

  • Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci USA 103(13):4841–4845

    Article  Google Scholar 

  • El-Boubbou K, Gruden C, Huang X (2007) Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J Am Chem Soc 129(44):13392–13393

    Article  Google Scholar 

  • Elkin T, Jiang X, Taylor S, Lin Y, Yang H, Brown J, Collins S, Sun YP (2005) Immuno-carbon nanotubes and recognition of pathogens. ChemBioChem 6:640–643

    Article  Google Scholar 

  • European nanotechnology gateway (ENG) (2006) Nanoforum report: nanotechnology in agriculture and food

  • Frank JF, Koffi RA (1990) Surface-adherent growth of Listeria monocytogenes is associated with increased resistance to surfactant sanitizers and heat. J Food Prot 53:550–554

    Google Scholar 

  • Gao J, Li L, Ho PL, Mak GC, Gu H, Xu B (2006) Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Adv Mater 18:3145–3148

    Article  Google Scholar 

  • Gu HW, Ho PL, Tsang KWT, Yu CW, Xu B (2003) Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentration. Chem Commun 15:1966–1967

    Article  Google Scholar 

  • Gu HW, Zheng RK, Zhang XX, Xu B (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126:5664–5665

    Article  Google Scholar 

  • Gu LR, Elkin T, Jiang XP, Li HP, Lin Y, Qu LW, Tzeng TRJ, Joseph R, Sun YP (2005) Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens. Chem Commun 7:874–876

    Article  Google Scholar 

  • Gu HW, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 9:941–949

    Article  Google Scholar 

  • He F, Liu S (2004) Detection of Pseudomonas aeruginosa using nano-structured electrode-separated piezoelectric DNA biosensor. Talanta 62:271–277

    Article  Google Scholar 

  • Ho JA, Hsu HW (2003) Procedures for preparing Escherichia coli O157:H7 immunoliposome and its application in liposome immunoassay. Anal Chem 75:4330–4334

    Article  Google Scholar 

  • Horák D, Babic M, Macková H, Benes MJ (2007) Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J Sep Sci 30(11):1751–1772

    Article  Google Scholar 

  • Institute of Food Science and Technology (IFST) (2006) Nanotechnology. Institute of Food Science and Technology Information Statement

  • Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed Engl 43(45):6042–6108

    Article  Google Scholar 

  • Kim G, Om AS, Mun JH (2007a) Nano-particle enhanced impedimetric biosensor for detedtion of foodborne pathogens. J Phys Conf Ser 61:555–559

    Article  Google Scholar 

  • Kim JS, Lee GG, Park JS, Jung YH, Kwak HS, Kim SB, Nam YS, Kwon ST (2007b) A novel multiplex PCR assay for rapid and simultaneous detection of five pathogenic bacteria: Escherichia coli O157:H7, Salmonella, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus. J Food Prot 70(7):1656–1662

    Google Scholar 

  • Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L, Ståhlberg A, Zoric N (2006) The real-time polymerase chain reaction. Mol Aspects Med 27(2–3):95–125

    Article  Google Scholar 

  • Lazcka O, Del Campo FJ, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22(7):1205–1217

    Article  Google Scholar 

  • Lee LY, Ong SL, Hu JY, Ng WJ, Feng Y, Tan X, Wong SW (2004) Use of semiconductor quantum dots for photostable immunofluorescence labeling of Cryptosporidium parvum. Appl Environ Microbiol 70(10):5732–5736

    Article  Google Scholar 

  • Lian W, Litherland SA, Badrane H, Tan W, Wu D, Baker HV, Gulig PA, Lim DV, Jin S (2004) Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Anal Biochem 334:135–144

    Article  Google Scholar 

  • Lin CC, Yeh YC, Yang CY, Chen CL, Chen GF, Chen CC, Wu YC (2002) Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J Am Chem Soc 124:3508–3509

    Article  Google Scholar 

  • Lin YS, Tsai PJ, Weng MF, Chen YC (2005) Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Anal Chem 77(6):1753–1760

    Article  Google Scholar 

  • Lin Y, Jiang XP, Elkin T, Fernando KAS, Gu LR, Taylor S, Yang H, Jones E, Wang W, Sun YP (2006) Carbon nanotubes for immunomagnetic separation of Escherichia coli O157:H7. J Nanosci Nanotechnol 6(3):868–887

    Article  Google Scholar 

  • Long MS, Keating CD (2006) Nanoparticle conjugation increases protein partitioning in aqueous two-phase systems. Anal Chem 78(2):379–386

    Article  Google Scholar 

  • Mao LD, Koser H (2006) Towards ferrofluidics for mu-TAS and lab on-a-chip applications. Nanotechnology 17:S34–S47

    Article  Google Scholar 

  • Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625

    Article  Google Scholar 

  • Monis PT, Giglio S (2006) Nucleic acid amplification-based techniques for pathogen detection and identification. Infect Genet Evol 6(1):2–12

    Article  Google Scholar 

  • Naja G, Bouvrette P, Hrapovich S, Liu Y, Luong JHT (2007) Detection of bacteria aided by immuno-nanoparticles. J Raman Spectr 38(11):1383–1389

    Article  Google Scholar 

  • Pyle BH, Broadaway SC, McFeters GA (1999) Sensitive detection of Escherichia coli O157:H7 in food and water by immunomagnetic separation and solid-phase laser cytometry. Appl Environ Microbiol 65:1966–1972

    Google Scholar 

  • Qu L, Luo PG, Taylor S, Lin Y, Huang W, Anyadike N, Tzeng TR, Stutzenberger F, Latour RA, Sun YP (2005) Visualizing adhesion-induced agglutination of Escherichia coli with mannosylated nanoparticles. J Nanosci Nanotechnol 5:319–322

    Article  Google Scholar 

  • Rosi NL, Mirkin CA (2003) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  Google Scholar 

  • Scallan E (2007) Activities, achievements, and lessons learned during the first 10 years of the Foodborne Diseases Active Surveillance Network: 1996–2005. Clin Infect Dis 44:718–25

    Article  Google Scholar 

  • Sharon N (2006) Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta 1760(4):527–537

    Google Scholar 

  • Silbernagel K, Jechorek R, Kaufer AL, Johnson RL (2005) Evaluation of the VIDAS Listeria in foods using Demi–Fraser and Fraser enrichment broths, as modification of AOAC Official Method 999.06 (AOAC Official Method 2004.06). J AOAC Int 88:750–760

    Google Scholar 

  • Sinclair B (1998) To bead or not to bead: applications of magnetic bead technology. Scientist 12(13):17

    MathSciNet  Google Scholar 

  • Soukka T, Halrmal H, Paukkunen J, Lolvgren T (2001) Utilization of kinetically enhanced monovalent binding affinity by immunoassays based on multivalent nanoparticle-antibody bioconjugates. Anal Chem 73:2254–2260

    Article  Google Scholar 

  • Soukka T, Antonen K, Härmä H, Pelkkikangas AM, Huhtinen P, Lövgren T (2003) Highly sensitive immunoassay of free prostatespecific antigen in serum using europium (III) nanoparticle label technology. Clin Chim Acta 328:45–58

    Article  Google Scholar 

  • Tan W, Wang K, He X, Zhao XJ, Drake T, Wang L, Bagwe RP (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24(5):621–638

    Article  Google Scholar 

  • Tok JB, Chuang FY, Kao MC, Rose KA, Pannu SS, Sha MY, Chakarova G, Penn SG, Dougherty GM (2006) Metallic striped nanowires as multiplexed immunoassay platforms for pathogen detection. Angew Chem Int Ed Engl 45(41):6900–6904

    Article  Google Scholar 

  • Varshney M, Yang L, Su XL, Li Y (2005) Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef. J. Food Prot 68:1804–1811

    Google Scholar 

  • Wallace FM, Call JE, Luchansky JB (2003) Validation of the USDA/ARS package rinse method for recovery of Listeria monocytogenes from naturally contaminated, commercially prepared frankfurters. J. Food Prot 66:1920–1923

    Google Scholar 

  • Wang HF, Gu LR, Lin Y, Lu FS, Meziani MJ, Luo PGJ, Wang W, Cao L, Sun YP (2006) Unique aggregation of anthrax (Bacillus anthracis) spores by sugar-coated single-walled carbon nanotubes. J Am Chem Soc 128(41):13364–13365

    Article  Google Scholar 

  • Wang L, Zhao W, O’Donoghue MB, Tan W (2007) Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjug Chem 18(2):297–301

    Article  MATH  Google Scholar 

  • Yang L, Li Y (2006) Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst 131(3):394–401

    Article  Google Scholar 

  • Yang H, Qu LW, Lin Y, Jiang XP, Sun YP (2007a) Detection of Listeria monocytogenes in biofilms using immunonanoparticles. J Biomed Nanotechnol 3(2):131–138

    Article  Google Scholar 

  • Yang H, Qu LW, Wimbrow AN, Jiang XP, Sun YP (2007b) Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. Int J Food Microbiol 118(2):132–138

    Article  Google Scholar 

  • Yu H, Bruno JG (1996) Immunomagnetic-electrochemiluminescent detection of Escherichia coli 0157 and Salmonella Typhimurium in foods and environmental water samples. Appl Environ Microbiol 62(2):587–592

    Google Scholar 

  • Yu LSL, Reed SA, Tarkkinen P, Tu SI (2003) Detection of Escherichia coli0157:H7 from food by a microplate sandwich immunoassay using time-resolved fluorometry. J Rapid Methods Auto Microbiol 11(2):133–143

    Article  Google Scholar 

  • Zhang HQ, Zhao Q, Li XF, Le XC (2007) Ultrasensitive assays for proteins. Analyst 132:724–737

    Article  Google Scholar 

  • Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. PNAS 101:15027–15032

    Article  Google Scholar 

  • Zhao GY, Xing FF, Deng SP (2007) A disposable amperometric enzyme immunosensor for rapid detection of Vibrio parahaemolyticus in food based on agarose/Nano-Au membrane and screen-printed electrode. Electrochem Commun 9(6):1263–1268

    Article  Google Scholar 

  • Zhou R, Wang P, Chang HC (2006) Bacteria capture, concentration and detection by alternating current dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes. Electrophoresis 27:1376–1385

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuping Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Li, H. & Jiang, X. Detection of foodborne pathogens using bioconjugated nanomaterials. Microfluid Nanofluid 5, 571–583 (2008). https://doi.org/10.1007/s10404-008-0302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-008-0302-8

Keywords

Navigation