Skip to main content

Advertisement

Log in

Landslides in moraines as triggers of glacial lake outburst floods: example from Palcacocha Lake (Cordillera Blanca, Peru)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Studies focusing on moraine deposits which slide into glacial lakes are scarce, even though they can trigger impact waves responsible for generating glacial lake outburst floods. We focused on landslides in lateral moraines as possible triggers. Detailed geomorphological, geophysical, and satellite radar interferometric investigations of the Palcacocha Lake moraine (Cordillera Blanca, Peru) together with laboratory tests on samples from the site provided data for slope stability calculations using GeoSlope software and hydrodynamic impact wave modeling using the Iber code. We identified landslides that could affect Palcacocha Lake and calculated their stability (factor of safety) under specified conditions, including variable water saturation and earthquake effects. Calculations showed that the moraine slopes are close to the threshold value (Fs = 1) for stability and are especially sensitive to water saturation. The height of impact waves triggered by a landslide in 2003 and the potential wave heights from newly identified, possibly active landslides were calculated, based on landslide volume estimates, detailed lake bathymetry, and basin topography. Results show that potential future landslide-triggered waves could have similar properties to the 2003 impact wave. Evidence gathered in this study suggests that glacial lake outburst floods triggered by landslides from moraines, however, would be probably smaller than floods resulting from other types of slope processes (e.g., ice/rock avalanches) if dam breach is not taken into account. This assumption has to be critically evaluated against site-specific conditions at a given lake and any possible environmental factors, such as climate change or earthquake that may mobilize larger volumes of moraine material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arendt A, Bliss A, Bolch T, Cogley JG, Gardner AS, Hagen JO, Hock R, Huss M, Kaser G, Kienholz C, Pfeffer WT, Moholdt G, Paul F, Radić V, Andreassen L, Bajracharya S, Barrand N, Beedle M, Berthier E, Bhambri R, Brown I, Burgess E, Burgess D, Cawkwell F, Chinn T, Copland L, Davies B, De Angelis H, Dolgova E, Filbert K, Forester R, Fountain A, Frey H, Giffen B, Glasser N, Gurney S, Hagg W, Hall D, Haritashya UK, Hartmann G, Helm C, Herreid S, Howat I, Kapustin G, Khromova T, König M, Kohler J, Kriegel D, Kutuzov S, Lavrentiev I, LeBris R, Lund J, Manley W, Mayer C, Miles ES, Li X, Menounos B, Mercer A, Mölg N, Mool P, Nosenko G, Negrete A, Nuth C, Pettersson R, Racoviteanu A, Ranzi R, Rastner P, Rau F, Raup B, Rich J, Rott H, Schneider C, Seliverstov Y, Sharp M, Sigurðsson O, Stokes C, Wheate R, Winsvold S, Wolken G, Wyatt F, Zheltyhina N (2014) Randolph Glacier Inventory—a dataset of global glacier outlines: version 4.0. Global Land Ice Measurements from Space, Boulder Colorado, Digital Media

    Google Scholar 

  • Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Probl 14:R1-R54. doi:10.1088/0266-5611/14/4/001

    Article  Google Scholar 

  • Barboux C, Delaloye R, Lambiel C (2014) Inventorying slope movements in an Alpine environment using DinSAR. Earth Surf Process Landf 39:2087–2099. doi:10.1002/esp.3603

    Article  Google Scholar 

  • Bareither CA, Edil TB, Mickelson DM (2008) Geological and physical factors affecting the friction angle of compacted sands. J Geotech Geoenvironmental Eng 134:1476–1489

    Article  Google Scholar 

  • Beló M, D’Agata C, Smiraglia C, Plefini M (2006) Ice core moraine collapse at Froni Glacier (Italian Alps): a case of tourist risk. Geophys Res Abstr 8 (08361)

  • Bolton MD (1986) The strength and dilatancy of sands. Géotechnique 36:65–78

    Article  Google Scholar 

  • Carey M (2010) In the shadow of melting glaciers: climate change and Andean society. Oxford University Press, p 288

  • Carey M (2005) Living and dying with glaciers: people’s historical vulnerability to avalanches 524 and outburst floods in Peru. Global Planet Change 47(2–4):122–134

    Article  Google Scholar 

  • Cigna F, Bianchini S, Casagli N (2012) How to assess landslide activity and intensity with persistent scatterer interferometry (PSI): the PSI-based matrix approach. Landslides. doi:10.1007/s10346-012-0335-7

    Google Scholar 

  • Costa JE, Schuster RL (1988) The formation and failure of natural dams. Geological Society of America Bulletin 100(7):1054–1068. doi:10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2

    Article  Google Scholar 

  • Crosetto M, Monserrat O, Bremmer C, Hanssen R, Capes R, Marsh S (2009) Ground motion monitoring using SAR interferometry: quality assessment. Eur Geol 26:12–15

    Google Scholar 

  • Emmer A, Vilímek V, Klimeš J, Cochachin A (2014) Glacier retreat, lakes development and associated natural hazards in Cordillera Blanca, Peru. In: Shan W, Guo Y, Wang F, Marui H, Strom A (eds) Landslides in cold regions in the context of climate change, Springer, pp 231–252

  • Emmer A, Cochachin A (2013) The causes and mechanisms of moraine-dammed lake failures in the Cordillera Blanca, North American Cordillera and Himalayas. AUC Geograph 48:5–15

    Article  Google Scholar 

  • Emmer A, Vilímek V (2014) New method for assessing the susceptibility of glacial lakes to the outburst floods in the Cordillera Blanca, Peru. Hydrol Earth Syst Sc 18:3461–3479. doi:10.5194/hess-18-3461-2014

    Article  Google Scholar 

  • Emmer A, Loarte EC, Klimeš J, Vilímek V (2015) Recent evolution and degradation of the bent Jatunraju glacier (Cordillera Blanca, Peru). Geomorphology 228:345–355

    Article  Google Scholar 

  • Emmer A, Vilímek V, Zapata ML (2016) Hazard mitigation of glacial lake outburst floods in the Cordillera Blanca (Peru): the effectiveness of remedial works. J Flood Risk Manage, not yet assigned to an issue. doi:10.1111/jfr3.12241

    Google Scholar 

  • Engel Z, Česák J, Rios Escobar V (2011) Rainfall-related debris flows in Carhuacocha Valley, Cordillera Huayhuash, Peru. Landslides 8:269–278

    Article  Google Scholar 

  • Evans SG, Clague JJ (1994) Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 10:107–128

    Article  Google Scholar 

  • Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88:200–217

    Article  Google Scholar 

  • Fischer T, Lentschke J, Küfmann C, Haas F, Baume O, Becht M, Schröder H (2013) High-mountainous permafrost under continental-climatic conditions: actual results of different mapping methods and an empirical-statistical modeling approach for the Northern Tien Shan. Geoph Res Abs 15:EGU2013–13074

    Google Scholar 

  • Frey H, García-Hernández J, Huggel C, Schneider D, Rohrer M, Gonzales Alfaro C, Muñoz Asmat R, Price Rios K, Meza Román L, Cochachin Rapre A, Masias Chacon P (2014) An early warning system for lake outburst floods of the Laguna 513, Cordillera Blanca, Peru. In: Proceedings of the International Conference on the Analysis and Management of Changing Risks for Natural Hazards. 18–19 November 2014, Padua, Italy

  • Giráldez C, Choquevilca W, Fernández F, Frey H, García J, Haeberli W, Huggel C, Ludena S, Rohrer M, Suarez W (2013) Large mass movements related to deglaciation effects in southern Peru (Cusco). Geoph Res Abs 15:EGU2013–8183

    Google Scholar 

  • Haeberli W, Wegmann M, Vonder Muhll D (1997) Slope stability problems related to glacier shrinkage and permafrost degradation in the Alps. Ecologae Geologicae Helvetiae 90:407–414

    Google Scholar 

  • Holm K, Bovis M, Jakob M (2004) The landslide response of alpine basins to post-Little Ice Age glacial thinning and retreat in southwestern British Columbia. Geomorphology 57:201–216

    Article  Google Scholar 

  • Hölbling D, Füreder P, Antolini F, Cigna F, Casagli N, Lang S (2012) A semi-automated object-based approach for landslide detection validated by persistent scatterer interferometry measures and landslide inventories. Remote Sens 4:1310–1336

    Article  Google Scholar 

  • Hubbard B, Heald A, Reynolds JM, Quincey D, Richardson SD, Zapata-Luyo M, Santillan-Portilla N, Hambrey MJ (2005) Impact of a rock avalanche on a moraine-dammed proglacial lake: Laguna Safuna Alta, Cordillera Blanca, Peru. Earth Surf Process Landf 30:1251–1264

    Article  Google Scholar 

  • Hugenholtz CH, Moorman BJ, Barlow J, Wainstein PA (2008) Large-scale moraine deformation at the Athabasca Glacier, Jasper National Park, Alberta, Canada. Landslides 5:251–260

    Article  Google Scholar 

  • Huggel C, Gruber S, Korup O (2013) Landslide hazards and climate change in high mountains. In: Shroder J, James LA, Harden CP, Clague JJ, Shroder J (eds) Treatise on geomorphology. Academic Press, San Diego, pp 288–301

    Chapter  Google Scholar 

  • Iber (2010) Two-dimensional modeling of free surface shallow water flow, Hydraulic reference manual, Iber v1.0. http://www.iberaula.es/web/index.php. Accessed 20 January 2014

  • Idris IM (1985): Earthquake ground motions. In: EERI Course on “Strong ground motion—seismic analysis, Design and code issues,” April 10th 1987, Pasadena, California

  • Instituto Nacional de Defensa Civil (2011) Informe de peligro N° 003-12/05/2011/COEN-SINADECI/15:00 horas (Informe N° 01): Peligro por aluvión en el departamento de Ancash, Huaraz-Peru: COEN-SINADECI, INDECI, Huaraz

  • Iribarren Anacona P, Mackintosh A, Norton KP (2014) Hazardous processes and events from glacier and permafrost areas: lessons from the Chilean and Argentinean Andes. Earth Surf Process Landf. doi:10.1002/esp.3524

    Google Scholar 

  • Klimeš J, Vilímek V, Vlčko J (2007) Debris flows in the vicinity of the Machu Picchu village, Peru. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Progress in landslide science. Springer, pp 313–314

  • Klimeš J (2012) Geomorphology and natural hazards of the selected glacial valleys, Cordillera Blanca, Peru. AUC Geograph 47:25–31

    Google Scholar 

  • Klimeš J, Benešová M, Vilímek V, Bouška P, Rapre AC (2014) The reconstruction of a glacial lake outburst flood using HEC-RAS and its significance for future hazard assessments: an example from Lake 513 in the Cordillera Blanca, Peru. Nat Haz 71:1617–1638

    Article  Google Scholar 

  • Lliboutry L, Morales BA, Pautre A, Schneider B (1977) Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru. I. Historical failures of morainic dams, their causes and prevention. J Glaciol 18:239–254

    Google Scholar 

  • Morgenstern NR, Price VE (1965) The analysis of the stability of general slip surfaces. Géotechnique 15:70–93

    Google Scholar 

  • Ng AH-M, Ge L, Li X, Abidin HZ, Andreas H, Zhang K (2012) Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. Int J Applied Earth Obser and Geoinform

  • Notti D, García-Davalillo JC, Herrera G, Cooksley G (2010) Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Nat Hazards Earth Syst Sci 10:1865–1875

    Article  Google Scholar 

  • Novotný J, Klimeš J (2014) Grain size distribution of soils within the Cordillera Blanca, Peru: an indicator of basic mechanical properties for slope stability evaluation. J Mt Sci 11:563–577

    Article  Google Scholar 

  • Ojeda N (1974) Consolidacion laguna Palcacocha (in Spanish). Electroperu, Huarás

  • Oppenheim V (1946) Sobre las lagunas de Huaraz (in Spanish). Boletin Sociedad Geologica Peru., pp 68–80

    Google Scholar 

  • Oppikofer T, Jaboyedoff M, Keusen H-R (2008) Collapse at the eastern Eiger flank in the Swiss Alps. Nature Geoscience 1:531–535. doi:10.1038/ngeo258

    Article  Google Scholar 

  • Panizzo A, De Girolamo P, Petaccia A (2005) Forecasting impulse waves generated by subaerial landslides J Geophys Res Ocean 110:23. doi:10.1029/2004jc002778

  • Portocarrero CAR (2014) The glacial lake handbook—reducing risk from dangerous glacial lakes in the Cordillera Blanca, Peru. USAID technical report, p 80

  • Rabatel A, Francou B, Soruco A, Gomez J, C’aceres B, Ceballos JL, Basantes R, Vuille M, Sicart JE, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Menegoz M, Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere 7:81–102

    Article  Google Scholar 

  • Reynolds JM (2011) An introduction to applied and environmental geophysics. Wiley Ltd., p 712

  • Reynolds JM (2003) Development of glacial hazard and risk minimisation protocols in rural environments. Methods of glacial hazard assessment and management in the Cordillera Blanca Peru. Reynolds Geo-Sciences Ltd., Flintshire, p 72

    Google Scholar 

  • Richardson SD, Reynolds JM (2000) Degradation of ice-cored moraine dams: implications for hazard development. IAHS Publications 264:187–197

    Google Scholar 

  • Righini G, Pancioli V, Casagli N (2011) Updating landslide inventory maps using Persistent Scatterer Interferometry (PSI). Int J Remote Sens 33:1–29

    Google Scholar 

  • Rosen P, Hensely S, Joughin I, Li F, Madsen S, Rodriguez E (2000) Goldstein R (2000) Synthetic aperture radar interferometry. Proc IEEE 88:333–382

    Article  Google Scholar 

  • Schneider-Muntau B, Zangerl C (2005) Numerical modelling of a slowly creeping landslide in crystalline rock—a case study. In: Konečný P (ed) Impact of human activity on the geological environment. Taylor & Francis Group plc, London, pp 535–540

    Google Scholar 

  • Schneider D, Huggel C, Cochachin A, Guillén S, García J (2014) Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Adv Geosci 35:145–155

    Article  Google Scholar 

  • Simeoni L, Tarantino A, Mongiovi L (2003) Effects of unsaturation on the stability of a moraine slope. In: Schanz T (ed) Unsaturated soils: experimental studies, Proceedings of the International Conference, From Experimental Evidence towards Numerical Modeling of Unsaturated Soils, Weimar, Germany., pp 497–508

    Google Scholar 

  • Somos-Valenzuela M, Chisolm RE, McKinney DC, Rivas D (2014) Hazard mapping of a potential glacial lake outburst flood in Huaraz, Peru. Center for research in water resources, Online Report 14–01. http://www.crwr.utexas.edu/online.shtml. Accessed 21 November 2014

  • Springman SM, Jommi C, Teysseire P (2003) Instabilities on moraine slopes induced by loss of suction: a case history. Géotechnique 53:3–10

    Article  Google Scholar 

  • Strozzi T, Wegmüller U, Tosi L, Bitelli G, Spreckels V (2001) Land subsidence monitoring with differential SAR interferometry. Photogramm Eng Remote Sens 67:1261–1270

    Google Scholar 

  • Strozzi T, Farina P, Corsini A, Ambrosi C, Thuring M, Zilger J, Wiesmann A, Wegmüller U, Werner C (2005) Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2:193–201

    Article  Google Scholar 

  • Strozzi T, Ambrosi C, Raetzo H (2013) Interpretation of aerial photographs and satellite SAR interferometry for the inventory of landslides. Remote Sens 5:2554–2570. doi:10.3390/rs5052554

    Article  Google Scholar 

  • Sun Q, Zhang L, Ding Y, Hu J, Liang H (2015) Investigation of slow-moving landslides from ALOS/PALSAR images with TCPInSAR: a case study of Oso, USA. Remote Sensing 7:72–88

    Article  Google Scholar 

  • Tamburini A, Del Conte S, Larini G, Lopardo L, Malaguti C, Vescovi P (2011) Application of SqueeSARTM to the characterization of deep seated gravitational slope deformations: the Berceto case study (Parma, Italy). In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, vol 2. Springer, New York, pp 437–444, Early Warning, Instrumentation and Monitoring

    Google Scholar 

  • Viero A, Teza G, Massironi M, Jaboyedoff M, Galgaro A (2010) Laser scanning-based recognition of rotational movements on a deep seated gravitational instability: the Cinque Torri case (North-Eastern Italian Alps). Geomorphology 122:191–204. doi:10.1016/j.geomorph.2010.06.014

    Article  Google Scholar 

  • Vilímek V, Zapata ML, Klimeš J, Patzelt Z, Santillán N (2005) Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru. Landslides 2:107–115

    Article  Google Scholar 

  • Vilímek V, Klimeš J, Červená L (2015) Glacier-related landforms and glacial lakes in Huascarán National Park, Peru. J Maps doi. doi:10.1080/17445647.2014.1000985

    Google Scholar 

  • Wegmüller U, Werner C, Strozzi T, Wiesmann A (2003) Multi-temporal interferometric point target analysis. In: Proceedings of the Multi-Temp Conference, Ispra, Italy, 16–18 July 2003

  • Werner C, Wegmüller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping. In Proceedings of IGARSS, Toulouse, France, 21–25 July 2003

  • Westoby MJ, Glasser NF, Brasington J, Hambrey MJ, Quincey DJ, Reynolds JM (2014) Modelling outburst floods from moraine-dammed glacial lakes. Earth-Sci Rev 134:137–159

    Article  Google Scholar 

  • Worni R, Huggel C, Clague JJ, Schaub Y, Stoffel M (2014) Coupling glacial lake impact, dam breach, and flood processes: a modeling perspective. Geomorphology 224:161–176

    Article  Google Scholar 

  • Yamada T (1998) Glacier lake and its outburst flood in the Nepal Himalaya., Japanese Society of Ice and Snow

    Google Scholar 

  • Zapata ML (2002) La dinamica glaciar en lagunas de la Cordillera Blanca (in Spanish). Acta Montana 19:37–60

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support provided by the Czech Science Foundation (Grant No. P209/11/1000), Grant Agency of Charles University (GAUK project no. 70 413; GAUK project no. 730 216), the European Space Agency (S:GLA:MO project), and the Swiss Agency for Development and Cooperation (SDC) (Proyecto Glaciares). This work was carried out thanks to the support of the long-term conceptual development research organisation RVO: 67985891. ERS and ENVISAT SAR data courtesy of C1F.6504, © ESA. ALOS PALSAR © JAXA. TERRASAR-X data courtesy HYD0562, © DLR. We thank John M. Reynolds for a very detailed and helpful review as well as Matt Rowberry and Christian Huggel for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Klimeš.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 844 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimeš, J., Novotný, J., Novotná, I. et al. Landslides in moraines as triggers of glacial lake outburst floods: example from Palcacocha Lake (Cordillera Blanca, Peru). Landslides 13, 1461–1477 (2016). https://doi.org/10.1007/s10346-016-0724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-016-0724-4

Keywords

Navigation