Skip to main content

Advertisement

Log in

Rainfall-related debris flows in Carhuacocha Valley, Cordillera Huayhuash, Peru

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Continuous heavy rainfall hit northern Peru in the second half of the 2008/2009 summer season. From the end of January to the beginning of March, the Cordillera Huayhuash experienced abnormally high precipitations that exceeded 270 mm. The antecedent rainfall, aggravated with a severe rainstorm of 20 mm on March 7 triggered a large debris flow in the upper Carhuacocha Valley early in the morning on March 8. The debris flow interrupted drainage from the upper part of the valley damming a lake in the narrow depression between the trough slope and the lateral moraine. As a result of the drainage interruption, water percolated through the moraine dam of Cangrajanca Lake where a secondary mass movement occurred in its inner slope. In September 2009, we mapped the debris flow and related landforms and estimated the total area and volume of both mass movements using geodetic measurements. About 104,000 m3 of sediments was moved from the trough slope towards the moraine from which 534,000 m3 flowed to Cangrajanca Lake subsequently. We analysed the rainfall conditions that triggered the debris flow using rainfall data from the nearby stations. We also compared the precipitation preceding the event with the rainfall thresholds for debris flow initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a.m.:

Ante meridiem

ASL:

Above mean sea level

D :

Rainfall duration

DEM:

Digital elevation model

GPS:

Global positioning system

I :

Mean rainfall intensity

ID:

Intensity–duration

M :

Measuring distance

p.m.:

Post meridiem

ppm:

Parts per million

Q max :

Peak discharge

UTM:

Universal Transverse Mercator

V :

Total volume

References

  • Ames A (ed) (1988) Glacier inventory of Peru. Hidrandina S.A, Huaráz

    Google Scholar 

  • Bacchini M, Zannoni A (2003) Relations between rainfall and triggering of debris-flow: case study of Cancia (Dolomites, Northeastern Italy). Nat Hazard Earth Sys 3:71–79

    Article  Google Scholar 

  • Ballantyne CK (1993) Holocene mass movement on Scottish Mountains: dating, distribution and implications for environmental change. In: Frenzel B (ed) Solifluction and climatic variation in the Holocene, 1st edn. Gustav Fischer Verlag, Stuttgart, pp 71–85

    Google Scholar 

  • Beniston M (2005) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31. doi:10.1023/A:1024458411589

    Article  Google Scholar 

  • Blikra LH, Nemec W (1998) Postglacial colluvium in western Norway: depositional processes, facies and palaeoclimatic record. Sedimentology 45:909–959

    Article  Google Scholar 

  • Bookhagen B, Strecker MR (2008) Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys Res Lett 35:L06403. doi:10.1029/2007GL032011

    Article  Google Scholar 

  • Bookhagen B, Strecker MR (2010) Modern Andean rainfall variation during ENSO cycles and its impact on the Amazon drainage basin. In: Hoorn C, Wesselingh FP (eds) Amazonia, landscape and species evolution: a look into the past, 1st edn. Blackwell, Oxford, pp 223–243

    Google Scholar 

  • Bovis MJ, Jakob M (1999) The role of debris supply to determine debris flow activity in southwestern B.C. Earth Surf Processes Land 24:1039–1054

    Article  Google Scholar 

  • Caine N (1980) The rainfall intensity—duration control of shallow landslides and debris flows. Geogr Ann A 62(1–2):23–27

    Article  Google Scholar 

  • Carlotto V, Cárdenas J, Romero D, Valdivia W, Mattos E, Tintaya D (2000) Los aluviones de Aobamba (Machupicchu) y Sacsara (Santa Teresa): geología, geodinámica y analisis de daños. Proccedings of X Congreso Peruano de Geología. Sociedad Geológica del Perú, Lima, pp 126

  • Chleborad AF (2003) Preliminary method for anticipating the occurrence of precipitation-induced landslides in Seattle, Washington. U.S. Geological Survey open-file report 00-469. U.S. Geological Survey, Reston

  • Coney PJ (1971) Structural evolution of the Cordillera Huayhuash, Andes of Peru. Geol Soc Am Bull 82:1863–1884

    Article  Google Scholar 

  • Crosta GB, Frattini P (2001) Rainfall thresholds for triggering soil slips and debris flow. In: Mugnai A, Guzzetti F, Roth G (eds) Mediterranean storms. Proceedings of the 2nd EGS Plinius conference on Mediterranean storms, Siena, Italy, pp 463–487

  • Dikau R, Brunsden D, Schrott L, Ibsen ML (eds) (1996) Landslide recognition: identification, movement and causes. Wiley, Chichester

    Google Scholar 

  • Evans SG, Bishop NF, Smoll LF, Murillo PV, Delaney KB, Oliver-Smith A (2009) A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970. Eng Geol 108(1–2):96–118. doi:10.1016/j.enggeo.2009.06.020

    Article  Google Scholar 

  • Eybergen J, Imeson F (1989) Geomorphologic processes and climate change. Catena 16:307–319

    Article  Google Scholar 

  • Fídel S, Guzman M, Zegarra L, Vilchez M, Colque T, Jackson LE (2005) Investigation of the origin and magnitude of debris flows from the Payhua Creek basin, Matucana area, Huarochirí Province, Peru. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management, 1st edn. Balekema, Leiden, pp 467–473

    Google Scholar 

  • Galán de Mera A, Baldeon S, Beltran H, Benavente M, Gomez J (2004) Datos sobre la vegetación del centro del Perú. Acta Bot Malacit 29:89–115

    Google Scholar 

  • Glade T (1998) Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Environ Geol 35:160–174

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17. doi:10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • Hall SR, Farber DL, Ramage JM, Rodbell DT, Finkel RC, Smith JA, Mark BG, Kassel C (2009) Geochronology of Quaternary glaciations from the tropical Cordillera Huayhuash, Peru. Quat Sci Rev 28:2991–3009. doi:10.1016/j.quascirev.2009.08.004

    Article  Google Scholar 

  • Hubbard B, Glasser N (2005) Field techniques in glaciology and glacial geomorphology. Wiley, Chichester

    Google Scholar 

  • Innes JL (1983) Debris flows. Prog Phys Geogr 7:469–501

    Article  Google Scholar 

  • Instituto Geofísico del Perú (2005) Atlas climático de precipitación y temperatura del aire de la Cuenca del Río Mantaro, vol I. Consejo Nacional del Ambiente, Lima

    Google Scholar 

  • Johnson AM (1976) The climate of Peru, Bolivia and Ecuador. In: Schwerdtfeger W (ed) World survey of climatology, 1st edn. Elsevier, Amsterdam, pp 147–218

    Google Scholar 

  • Kaser G, Osmaston H (2002) Tropical glaciers. Cambridge University Press, Cambridge

    Google Scholar 

  • Klimeš J, Vilímek V (2011) A catastrophic landslide near Rampac Grande in the Cordillera Negra, northern Peru. Landslides. doi:10.1007/s10346-010-0249-1

  • Lenters JD, Cook KH (1999) Summertime precipitation variability over South America: role of the large-scale circulation. Mon Weather Rev 127:409–431

    Article  Google Scholar 

  • Mizuyama T, Kobashi S, Ou G (1992) Prediction of debris flow peak discharge. Interpraevent 4:99–108

    Google Scholar 

  • Rebetez M, Lugon R, Baeriswyl PA (1997) Climatic change and debris flows in high mountain regions: the case study of the Ritigraben Torrent (Swiss Alps). Clim Change 36:371–389

    Article  Google Scholar 

  • Rein B (2007) How do the 1982/83 and 1997/98 El Niños rank in a geological record from Peru. Quatern Int 161:56–66. doi:10.1016/j.quaint.2006.10.023

    Article  Google Scholar 

  • Vilímek V, Klimeš J, Vlčko J, Carreño R (2006) Catastrophic debris flows near Machu Picchu village (Aguas Calientes), Peru. Environ Geol 50:1041–1052. doi:10.1007/s00254-006-0276-3

    Article  Google Scholar 

Download references

Acknowledgements

Fieldwork in 2009 was funded by the Czech Science Foundation (project no. 205/07/831) and by the Czech Ministry of Education (MSM 0021620831). The Agteca S.A. is thanked for providing compiled precipitation data for Peru.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbyněk Engel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engel, Z., Česák, J. & Escobar, V.R. Rainfall-related debris flows in Carhuacocha Valley, Cordillera Huayhuash, Peru. Landslides 8, 269–278 (2011). https://doi.org/10.1007/s10346-011-0259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-011-0259-7

Keywords

Navigation