Skip to main content
Log in

Integration of a limit-equilibrium model into a landslide early warning system

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Landslides are a significant hazard in many parts of the world and exhibit a high, and often underestimated, damage potential. Deploying landslide early warning systems is one risk management strategy that, amongst others, can be used to protect local communities. In geotechnical applications, slope stability models play an important role in predicting slope behaviour as a result of external influences; however, they are only rarely incorporated into landslide early warning systems. In this study, the physically based slope stability model CHASM (Combined Hydrology and Stability Model) was initially applied to a reactivated landslide in the Swabian Alb to assess stability conditions and was subsequently integrated into a prototype of a semi-automated landslide early warning system. The results of the CHASM application demonstrate that for several potential shear surfaces the Factor of Safety is relatively low, and subsequent rainfall events could cause instability. To integrate and automate CHASM within an early warning system, international geospatial standards were employed to ensure the interoperability of system components and the transferability of the implemented system as a whole. The CHASM algorithm is automatically run as a web processing service, utilising fixed, predetermined input data, and variable input data including hydrological monitoring data and quantitative rainfall forecasts. Once pre-defined modelling or monitoring thresholds are exceeded, a web notification service distributes SMS and email messages to relevant experts, who then determine whether to issue an early warning to local and regional stakeholders, as well as providing appropriate action advice. This study successfully demonstrated the potential of this new approach to landslide early warning. To move from demonstration to active issuance of early warnings demands the future acquisition of high-quality data on mechanical properties and distributed pore water pressure regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anderson M, Holcombe L, Flory R, Renaud J-P (2008) Implementing low-cost landslide risk reduction: a pilot study in unplanned housing areas of the Caribbean. Nat Hazard 47:297–315. doi:10.1007/s11069-008-9220-z

    Article  Google Scholar 

  • Anderson MG, Lloyd DM, Park A, Hartshorne J, Othman A (1996) Establishing new design dynamic modelling criteria for tropical cut slopes. In: Senneset K (ed) Landslides, 7th International Symposium on Landslides. Balkema, Rotterdam, pp 1067–1072

    Google Scholar 

  • Anderson MG, Richards K (1987) Modelling slope stability: the complementary nature of geotechnical and geomorphological approaches. In: Anderson MG (ed) Slope stability: geotechnical engineering and geomorphology. Wiley, New York, pp. 1–9

  • Anderson SA, Thallapally LK (1996) Hydrologic response of a steep tropical slope to heavy rainfall. In: Senneset K (ed) Landslides, 7th International Symposium on Landslides. Balkema, Rotterdam, pp 1489–1495

    Google Scholar 

  • Aslan AM, Burghaus S, Li L, Schauerte W, Kuhlmann H (2010) Bewegungen an der Oberfläche. In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 74–84

    Google Scholar 

  • Badoux A, Graf C, Rhyner J, Kuntner R, McArdell BW (2009) A debris-flow alarm system for the Alpine Illgraben catchment: design and performance. Nat Hazard 49:517–539. doi:10.1007/s11069-008-9303-x

    Article  Google Scholar 

  • Barla G, Amici R, Vai L, Vanni A (2004) Investigation, monitoring and modelling of a landslide in porphyry in a public safety perspective. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization, 9th International Symposium on Landslides. Balkema, Leiden, pp 623–628

    Google Scholar 

  • Bartels H, Dietzer B, Malitz G, Albrecht FM, Guttenberg J (2005) KOSTRA-DWD-2000. Starkniederschlagshöhen für Deutschland (1951–2000). Fortschreibungsbericht. Deutscher Wetterdienst (DWD), Abteilung Hydrometeorologie, Offenbach, Germany

  • Bear J (1972) Dynamics of fluids in porous media. Dover, New York

    Google Scholar 

  • Bell R (2007) Lokale und regionale Gefahren- und Risikoanalyse gravitativer Massenbewegungen an der Schwäbischen Alb. Dissertation. University of Bonn, Germany

  • Bell R, Kruse J-E, Garcia A, Glade T, Hördt A (2006) Subsurface investigations of landslides using geophysical methods—geoelectrical applications in the Swabian Alb (Germany). Geographica Helvetica 201–208.

  • Bell R, Mayer J, Pohl J, Greiving S, Glade T (2010a) Integrative Frühwarnsysteme für Gravitative Massenbewegungen (ILEWS)—Monitoring, Modellierung, Implementierung. Klartext, Essen

    Google Scholar 

  • Bell R, Wiebe H, Krummel H (2010b) Vorerkundung. In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 62–69

    Google Scholar 

  • Beven KJ (1985) Distributed models. In: Anderson MG, Burt TB (eds) Hydrological forecasting. Wiley, New York, pp 405–435

    Google Scholar 

  • Bibus E (1986) Die Rutschung am Hirschkopf bei Mössingen (Schwäbische Alb). Geowissenschaftliche Rahmenbedingungen—Geoökologische Folgen Geoökodynamik 333–360

  • Bibus E (1999) Vorzeitige, rezente und potentielle Massenbewegungen in SW-Deutschland—Synthese des Tübinger Beitrags zum MABIS-Projekt. In: Bibus E, Terhorst B (eds) Angewandte Studien zu Massenbewegungen. pp 1–57

  • Bishop AW (1955) The use of the slip circle in the stability analysis of slopes. Geotechnique 5:7–17

    Article  Google Scholar 

  • Bleich KE (1960) Das Alter des Albtraufs. Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg 115:39–92

    Google Scholar 

  • Blikra LH (2008) The Aknes rockslide; monitoring, threshold values and early-warning. Landslides and engineered slopes. From the past to the future. Proceedings of the 10th International Symposium on Landslides and Engineered Slopes, pp. 1089–1094

  • Camek T, Becker R, Öhl S (2010) Bodenfeuchte (TDR, Tensiometer). In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 92–100

    Google Scholar 

  • Cannata M, Luan TX, Molinari ME, Long NH (2010) WPS application for shallow landslide hazard assessment. GeoInformatics for Spatial-Infrastructure Development in Earth and Allied Sciences (GIS-IDEAS) 2010

  • Capparelli G, Tiranti D (2010) Application of the MoniFLaIR early warning system for rainfall-induced landslides in Piedmont region (Italy). Landslides 4:401–410

    Article  Google Scholar 

  • Chung C (2008) Predicting landslides for risk analysis—spatial models tested by a cross-validation technique. Geomorphology 94:438–452. doi:10.1016/j.geomorph.2006.12.036

    Article  Google Scholar 

  • Clark AR, Moore R, Palmer JS (1996) Slope monitoring and early warning systems: application to coastal landslide on the south and east coast of England, UK. In: Senneset K (ed) Landslides, 7th International Symposium on Landslides. Balkema, Rotterdam, pp 1531–1538

    Google Scholar 

  • Collison AJC, Anderson MG (1996) Using a combined slope hydrology/stability model to identify suitable conditions for landslide prevention by vegetation in the humid tropics. Earth Surf Process Landforms 21:737–747

    Article  Google Scholar 

  • Consortium for Small Scale Modeling (2007) Operations at DWD—COSMO-DE. http://www.cosmo-model.org/content/tasks/operational/dwd/default_de.htm. Accessed 24 Jan 2011

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (special report), Transportation and Research Board Special Report 247. National Research Council, Washington D.C., pp 36–75

    Google Scholar 

  • Deutscher Wetterdienst (2010b) COSMO. http://goo.gl/f47Cz. Accessed 24 Jan 2011

  • Deutscher Wetterdienst (2010a) Wettervorhersagemodelle. http://goo.gl/Gu9v3. Accessed 24 Jan 2011

  • Dikau R, Brunsden D, Schrott L, Ibsen ML (eds) (1996) Landslide recognition: identification, movement and causes: identification, movement and causes. Wiley, Chichester

  • Dikau R, Weichselgartner J (2005) Der unruhige Planet. Der Mensch und die Naturgewalten. Primus, Darmstadt

  • Ferentinou MD, Sakellariou M, Matziaris V, Charalambous S (2006) An introduced methodology for estimating landslide hazard for seismic and rainfall induced landslides in a geographical information system environment. In: Nadim F, Pöttler R, Einstein H, Klapperich H, Kramer S (eds) Geohazards. Lillehammer, Norway, pp 1–8

    Google Scholar 

  • Forchheimer P (1930) Hydraulik. Teubner, Leipzig

    Google Scholar 

  • Froese CR, Murray C, Cavers DS, Anderson WS, Bidwell AK, Read RS, Cruden DM, Langenberg W (2005) Development and implementation of a warning system for the South Peak of Turtle Mountain. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International Conference on Landslide Risk Management. Taylor & Francis, Vancouver, pp 705–712

    Google Scholar 

  • Fundinger A (1985) Ingenieurgeologische Untersuchung und geologische Kartierung (Dogger/Malm) der näheren Umgebung der Rutschungen am Hirschkopf bei Mössingen und am Irrenberg bei Thanheim (Baden-Würrtemberg). Geowissenschaftliche Fakultät, University Tübingen, Tübingen

    Google Scholar 

  • Goetz JN, Guthrie RH, Brenning A (2011) Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology 129(3–4):376–386

    Google Scholar 

  • Greiving S (2010) Risikomanagement. In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp. 203–230

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299. doi: 10.1016/j.geomorph.2005.06.002

    Google Scholar 

  • Ho KKS, Lau JWC (2010) Learning from slope failures to enhance landslide risk management. Q J Eng Geol Hydrogeol 43:33–68

    Article  Google Scholar 

  • Iovine GGR, Lollino P, Gariano SL, Terranova OG (2010) Coupling limit equilibrium analyses and real-time monitoring to refine a landslide surveillance system in Calabria (southern Italy). Nat Hazards Earth Syst Sci 10:2341–2354. doi:10.5194/nhess-10-2341-2010

    Article  Google Scholar 

  • Jäger S, Paulsen H, Mayer C, Huber B, Dietz R, Greve K, Camek T (2010) Informationstechnik in der Frühwarnmodellierung. In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 155–179

    Google Scholar 

  • Jäger S, Thiebes B, Bell R, Glade T (2012) Applying geospatial web standards for real-time on-line slope stability modeling as a basis for a landslide early warning system. Proceedings of the 11th International & 2nd North American Symposium on Landslides

  • Janbu N (1996) Slope stability evaluations in engineering practice. In: Senneset K (ed) Landslides, 7th International Symposium on Landslides. Balkema, Rotterdam, pp 17–34

    Google Scholar 

  • Janbu N (1954) Application of composite slip surface for stability analysis. Proceedings of the European Conference on the Stability of Earth Slopes. pp 43–49

  • Kallinich J (1999) Verbreitung, Alter und Ursachen von Massenverlagerungen an der Schwäbischen Alb auf der Grundlage von geomorphologischen Kartierungen. In: Bibus E, Terhorst B (eds) Angewandte Studien zu Massenbewegungen. pp 59–82

  • Konikow LF, Bredehoft JD (1992) Groundwater models cannot be validated. Adv Water Resour 15:75–83

    Article  Google Scholar 

  • Krauter E (1992) Hangrutschungen – Ein Umweltproblem. Conference paper @ Ingenieurvermessung 1992. XI. Internationaler Kurs Für Ingenieurvermessung. Zürich, Switzerland. Eidgenössische Technische Hochschule (ETH) Zürich:1–12.

  • Krauter E, Lauterbach M, Feuerbach J (2007) Hangdeformationen–Beobachtungsmethoden und Risikoanalyse. Geo-international & Forschungsstelle Rutschungen 1–6.

  • Kreja R, Terhorst B (2005) GIS-gestützte Ermittlung rutschungsgefährdeter Gebiete am Schönberger Kapf bei Öschingen (Schwäbische Alb). Die Erde 136:395–412

    Google Scholar 

  • Kruse JE (2006) Untergrunderkundung und Monitoring von gravitativen Massenbewegungen mit Gleichstromgeoelektrik und Radiomagnetotellurik. Unpublished master thesis. University of Bonn, Germany

  • Lateh H, Anderson MG, Ahmad F (2008) CHASM—the model to predict stability of gully walls along the east–west highway in Malaysia: a case study. Proceedings of the First World Landslide Forum. ISDR, Tokyo, Japan, pp. 340–343

  • Lauterbach M, Krauter E, Feuerbach J (2002) Satellitengestütztes Monitoring einer Großrutschung im Bereich eines Autobahndammes bei Landstuhl/Pfalz. Geotechnik 25:97–100

    Google Scholar 

  • Leser H (1982) Erläuterungen zur Geomorphologischen Karte 1:25,000 der Bundesrepublik Deutschland. GMK 25 Blatt 9 7520 Mössingen Geomorphologische Detailkartierung in der Bundesrepublik Deutschland. Geo Center, Stuttgart, Germany

  • Macfarlane DF, Sylvester PK, Benck JM, Whiford ND (1996) Monitoring strategy and performance of instrumentation in the clyde power project landslide, New Zealand. In: Senneset K (ed) Landslides (Glissements de Terrain): Proceedings of the 7th International Symposium, Trondheim, Norway, 17–21 June 1996. Taylor & Francis, London, pp. 1557–1564

  • Malitz G (2005) KOSTRA-DWD-2000. Starkniederschlagshöhen für Deutschland (1951–2000). Grundlagenbericht. Deutscher Wetterdienst (DWD), Hydrometeorologie, Offenbach, Germany

  • Matziaris VG, Ferentinou M, Sakellariou MG (2005) Slope stability in unsaturated soils under static and rainfall conditions. Ovidius Univ Ann Ser Civ Eng 1:103–110

    Google Scholar 

  • Mayer J, Pohl W (2010) Risikokommunikation. In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 180–202

    Google Scholar 

  • Meyenfeld H (2009) Modellierungen seismisch ausgelöster gravitativer Massenbewegungen für die Schwäbische Alb und den Raum Bonn und Erstellen von Gefahrenhinweiskarten. Dissertation. University of Bonn, Germany

  • Millington RJ, Quirk JP (1959) Permeability of porous media. Nature 183:387–388

    Article  Google Scholar 

  • Muir-Wood D (2004) Geotechnical modelling. Taylor and Francis, London

    Book  Google Scholar 

  • Muir-Wood D, Mackenzie NL, Chan AHC (1993) Selection of parameters for numerical predictions. In: Predictive soil mechanics. Proceedings of the Wroth Memorial symposium, St Catherine’s College, Oxford. Thomas Telford, pp. 496-512

  • Neuhäuser B, Terhorst B (2007) Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology 86:12–24

    Google Scholar 

  • Ohmert W, Von Koenigswald W, Münzing K, Villinger E (1988) Geologische Karte 1:25.000 von Baden Württemberg. Erläterungen zu Blatt 7521 Reutlingen

  • Palm H, Staab S, Schmitz R (2003) Verkehrsicherheiten an klassifizierten Straßen im Hinblick auf Steinschlag- und Felssturzgefahr. Rutschungen in Rheinland-Pfalz. Erkennen, Erkunden und Sanieren. Felssicherung und Sanierung von Stützmauern. Mainz, Germany, pp. 16–22

  • Papathoma-Köhle M, Neuhäuser B, Ratzinger K, Wenzel H, Dominey-Howes D (2007) Elements at risk as a framework for assessing the vulnerability of communities to landslides. Nat Hazards Earth Syst Sci 7:765–779

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1:318–333

    Article  Google Scholar 

  • Rossi M, Guzzetti F, Reichenbach P, Mondini AC, Peruccacci S (2010) Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114:129–142

    Article  Google Scholar 

  • Ruch C (2009) Georisiken. Aktive Massenbewegungen am Albtrauf. LGRB-Nachrichten 8:1–2

    Google Scholar 

  • Sakellariou M, Ferentinou M, Charalambous S (2006) An integrated tool for seismic induced landslide hazards mapping. In: Agioutantis Z, Komnitsas K (eds) First European Conference on Earthquake Engineering and Seismology. Geneva, Switzerland, pp. 1365–1375

  • Sass O, Bell R, Glade T (2008) Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology 93:89–103

    Article  Google Scholar 

  • Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 5:1569–1578

    Article  Google Scholar 

  • Saxton KE, Willey MP (2006) The SPAW model for agricultural field and pond hydrologic simulation. In: Singh VP, Frevert D (eds) Mathematical modeling of watershed hydrology. CRC, Boca Raton, pp. 401–435

  • Schädel K, Stober I (1988) Rezente Großrutschungen an der Schwäbischen Alb. Jahreshefte des Geologischen Landesamtes Baden-Württemberg 431–439

  • Schut P (2007) OpenGIS Web Processing Service: OGC 05-007r7: Version 1.0. 0. Open Geospatial Consortium Inc.

  • Simonis I, Echterhoff J (2006) Draft OpenGIS® Web Notification Service Implementation Specification.

  • Sirangelo B, Braca G (2004) Identification of hazard conditions for mudflow occurrence by hydrological model: application of FLaIR model to Sarno warning system. Eng Geol 73:267–276

    Article  Google Scholar 

  • Stähli M, Bartelt P (2007) Von der Auslösung zur Massenbewegung. In: Hegg C, Rhyner J (eds) Warnung bei aussergewöhnlichen Naturereignissen. pp 33–38

  • Sung CT, Iba J (2010) Accuracy of the Saxton–Rawls method for estimating the soil water characteristics for mineral soils of Malaysia. Pertanika J Trop Agric Sci 33:297–302

    Google Scholar 

  • Terhorst B (1997) Formenschatz, Alter und Ursachenkomplexe von Massenverlagerungen an der schwäbischen Juraschichtstufe unter besonderer Berücksichtigung von. Boden- und Deckschichtenentwicklung, Tübingen

    Google Scholar 

  • Terhorst B, Kreja R (2009) Slope stability modelling with SINMAP in a settlement area of the Swabian Alb. Landslides 6:309–319. doi:10.1007/s10346-009-0167-2

    Article  Google Scholar 

  • Thiebes B (2011) Landslide analysis and early warning—local and regional case study in the Swabian Alb, Germany. Dissertation. University of Vienna, Austria

  • Thiebes B (2012) Landslide analysis and early warning systems: local and regional case study in the Swabian Alb. Springer, Berlin

    Book  Google Scholar 

  • Turner AK (1996) Socioeconomic significance of landslides. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (special report). Transportation Research Board, pp. 12–35

  • UMS (2007) Bedienungsanleitung T8 Langzeitmonitoring-Tensiometer. UMS, München

    Google Scholar 

  • Wiebe H, Krummel H (2010) Bodenfeuchte (Geoelektrik). In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 100–116

    Google Scholar 

  • Wiebe H, Krummel H, Camek T, Thiebes B (2010) Kombinierte Auswertung der Bodenfeuchte. In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 116–129

    Google Scholar 

  • Wilkinson PL, Anderson MG, Lloyd DM (2002a) An integrated hydrological model for rain-induced landslide prediction. Earth Surf Process Landforms 27:1285–1297. doi:10.1002/esp.409

    Article  Google Scholar 

  • Wilkinson PL, Anderson MG, Lloyd DM, Renaud JP (2002b) Landslide hazard and bioengineering: towards providing improved decision support through integrated numerical model development. Environ Model Softw 17:333–344

    Article  Google Scholar 

  • Wilkinson PL, Brooks SM, Anderson MG (2000) Design and application of an automated non-circular slip surface search within a combined hydrology and stability model (CHASM). Hydrol Processes 14:2003–2017

    Article  Google Scholar 

  • Willenberg H, Spillmann T, Eberhardt E, Evans KF, Loew H, Maurer H (2002) Multidisciplinary monitoring of progressive failure process in brittle rock slopes—concepts and system design. In: Jan Rybář J, Stemberk J, Wagner P (eds) Landslides: proceeding of the First European Conference on Landslides. Balkema, Prague, pp 477–483

    Google Scholar 

  • Yin Y (2009) Landslide mitigation strategy and implementation in China. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 482–484

    Google Scholar 

  • Yin Y, Wang H, Gao Y, Li X (2010) Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China. Landslides 7:339–349. doi:10.1007/s10346-010-0220-1

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the German Ministry of Education and Research for funding the ILEWS project (No. 03G0653A– 03G0653F). We are grateful to LUBW, LGRB and DWD for providing essential data and thank the administration of Lichtenstein-Unterhausen for their cooperation. Additional support was granted by the 51st Chinese PostDoc Science Foundation (No.2012M511298). We also like to thank two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benni Thiebes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiebes, B., Bell, R., Glade, T. et al. Integration of a limit-equilibrium model into a landslide early warning system. Landslides 11, 859–875 (2014). https://doi.org/10.1007/s10346-013-0416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-013-0416-2

Keywords

Navigation