Skip to main content

Advertisement

Log in

Beneficial Effects of Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Compost on Lettuce (Lactuca sativa) Growth Under Field Conditions

Günstige Auswirkungen von pflanzenwachstumsfördernden Rhizobakterien, arbuskulären Mykorrhizapilzen und Kompost auf das Wachstum von Salat (Lactuca sativa) unter Feldbedingungen

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Two independent field experiments (2017 and 2019) were conducted to evaluate the effects of plant growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi (AMF; AMF1: Rhizophagus irregularis strain and AMF2: AMF consortium) and compost (Comp) in comparison to chemical NPK fertilizers on growth and yield of lettuce plants and soil properties. The biofertilizers-biostimulants were applied alone or in combinations and increased significantly the lettuce dry weight (DW), number of leaves, and yield compared to the control. In the first experiment, the highest plant DW was obtained by NPK, PGPR + AMF2 + Comp and PGPR treatments recording an increase of 109, 109, and 95%, respectively, compared to the control plants. In the second experiment the highest plant DW was obtained by the NPK (77%), followed by Comp and PGPR + AMF1 + Comp treatments increasing the plant DW by 52 and 51%, respectively, compared to the control. Concerning to lettuce yield, in the first experiment, the highest yields were obtained by NPK, PGPR + AMF2, PGPR + AMF1 + Comp, PGPR, AMF2 + Comp, AMF1 + Comp and AMF2 treatments recording an enhancement of 68, 64, 63, 58, 57, 57, and 55%, respectively. In the second experiment, the application of NPK based fertilizers resulted in the highest yield (77%), followed by PGPR + AMF1 + Comp, PGPR + AMF2 + Comp, AMF1 + Comp, and AMF2 + Comp treatments, increasing the yield by 61, 61, 54, and 55%, respectively, compared to the control. Concerning the soil organic matter (OM), the applied treatments had significantly increased the amount of the OM compared to the control. The highest amounts of OM were obtained by the PGPR + AMF2 + Comp treatment in the first experiment and the PGPR + AMF1 + Comp treatment in the second experiment. The available phosphorus (P) was significantly increased by the application of all treatments. The highest records were obtained by the application of Comp, PGPR + AMF1 and PGPR + AMF1 + Comp treatment after the first experiment. In the second experiment, the highest amount of P was obtained by PGPR + AMF2 + Comp treatment. Application of biofertilizers-biostimulants in combination proved to be beneficial for the improvement of the tested culture yield.

Zusammenfassung

In zwei unabhängigen Feldversuchen (2017 und 2019) wurden die Auswirkungen von pflanzenwachstumsfördernden Rhizobakterien (PGPR), arbuskulären Mykorrhizapilzen (AMF; AMF1: Rhizophagus irregularis-Stamm und AMF2: AMF-Konsortium) und Kompost (Comp) im Vergleich zu chemischen NPK-Düngern auf Wachstum und Ertrag von Salatpflanzen und Bodeneigenschaften untersucht. Die Biodünger-Biostimulanzien wurden allein oder in Kombinationen eingesetzt und steigerten das Trockengewicht (DW), die Anzahl der Blätter und den Ertrag von Salat im Vergleich zur Kontrolle deutlich. Im ersten Versuch erzielten die Behandlungen mit NPK, PGPR + AMF2 + Comp und PGPR die höchsten DW-Werte der Pflanzen mit einer Steigerung von 109 %, 109 % bzw. 95 % im Vergleich zu den Kontrollpflanzen. Im zweiten Versuch wurde das höchste Pflanzentrockengewicht durch die NPK-Behandlung (77 %) erzielt, gefolgt von den Behandlungen Comp und PGPR + AMF1 + Comp, die das Pflanzentrockengewicht um 52 % bzw. 51 % im Vergleich zur Kontrolle erhöhten. Was den Salatertrag betrifft, so wurden im ersten Versuch die höchsten Erträge mit den Behandlungen NPK, PGPR + AMF2, PGPR + AMF1 + Comp, PGPR, AMF2 + Comp, AMF1 + Comp und AMF2 erzielt, die eine Steigerung von 68 %, 64 %, 63 %, 58 %, 57 %, 57 % bzw. 55 % aufwiesen. Im zweiten Versuch führte die Anwendung von NPK-Dünger zum höchsten Ertrag (77 %), gefolgt von den Behandlungen PGPR + AMF1 + Comp, PGPR + AMF2 + Comp, AMF1 + Comp und AMF2 + Compt, die den Ertrag um 61 %, 61 %, 54 % bzw. 55 % im Vergleich zur Kontrolle erhöhten. Was die organische Substanz (OM) im Boden anbelangt, so hatten die angewandten Behandlungen einen signifikant höheren OM-Gehalt als die Kontrolle. Die höchsten OM-Mengen wurden durch die PGPR + AMF2 + Comp-Behandlung im ersten Versuch und durch die PGPR + AMF1 + Comp-Behandlung im zweiten Versuch erzielt. Der verfügbare Phosphor (P) wurde durch die Anwendung aller Behandlungen deutlich erhöht. Die höchsten Werte wurden durch die Anwendung der Behandlungen Comp, PGPR + AMF1 und PGPR + AMF1 + Comp im ersten Versuch erzielt. Im zweiten Versuch wurde der höchste P‑Gehalt durch die Behandlung PGPR + AMF2 + Comp erzielt. Der kombinierte Einsatz von Biodüngern und Biostimulanzien erwies sich als vorteilhaft für die Verbesserung des Ertrags der getesteten Kulturen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aalipour H, Nikbakht A, Etemadi N, Rejali F, Soleimani M (2020) Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica G.) under drought stress. Sci Hortic 261:108923. https://doi.org/10.1016/j.scienta.2019.108923

    Article  CAS  Google Scholar 

  • Abdel-Salam E, Alatar A, El-Sheikh MA (2018) Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J Biol Sci 25:1772–1780. https://doi.org/10.1016/j.sjbs.2017.10.015

    Article  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Univ Sci 26(1):1–20. https://doi.org/10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  • Ait-El-Mokhtar M, Baslam M, Ben-Laouane R, Anli M, Boutasknit A, Mitsui T, Wahbi S, Meddich A (2020) Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost. Front Sustain Food Syst 4:131. https://doi.org/10.3389/fsufs.2020.00131

    Article  Google Scholar 

  • Alikhani HA, Saleh-Rastin N, Antoun H (2006) Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil 287(1–2):35–41. https://doi.org/10.1007/s11104-006-9059-6

    Article  CAS  Google Scholar 

  • Anli M, Baslam M, Tahiri A, Raklami A, Symanczik S, Boutasknit A, Ait-El-Mokhtar M, Ben-Laouane R, Toubali S, Ait Rahou Y, Ait Chitt M, Oufdou K, Mitsui T, Hafidi M, Meddich A (2020) Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. Front Plant Sci 11:1–21. https://doi.org/10.3389/fpls.2020.516818

    Article  Google Scholar 

  • Anli M, Symanczik S, El Abbassi A, Ait-El-Mokhtar M, Boutasknit A, Ben-Laouane R, Toubali S, Baslam M, Mäder P, Hafidi M, Meddich A (2021) Use of arbuscular mycorrhizal fungus Rhizoglomus irregulare and compost to improve growth and physiological responses of Phoenix dactylifera ‘Boufgouss’. Plant Biosyst 155:763–771. https://doi.org/10.1080/11263504.2020.1779848

    Article  Google Scholar 

  • Antoun H (2013) Plant-growth-promoting rhizobacteria. In: Brenner’s encycl genet. Elsevier, Québec, pp 353–355

    Chapter  Google Scholar 

  • Antunes PM, Franken P, Schwarz D, Rillig MC, Cosme M, Scott M, Hart MM (2012) Linking soil biodiversity and human health: do arbuscular mycorrhizal fungi contribute to food nutrition. In: Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones TH, Ritz K, Six J, Strong DR, van Der Putten WH (eds) Soil Ecol Ecosyst Serv, 1st edn. Oxford University Press, Oxford, pp 153–172

    Chapter  Google Scholar 

  • Avio L, Sbrana C, Giovannetti M, Frassinetti S (2017) Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. Sci Hortic 224:265–271. https://doi.org/10.1016/j.scienta.2017.06.022

    Article  CAS  Google Scholar 

  • Baize D (2000) Guide des analyses en pédologie [Guide of analyzes in pedology], 2nd edn. Editions Quae, Paris

    Google Scholar 

  • Bano N, Musarrat J (2003) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol 46(5):324–328. https://doi.org/10.1007/s00284-002-3857-8

    Article  CAS  PubMed  Google Scholar 

  • Barje F, Meddich A, El Hajjouji H, El Asli A, Ait Baddi G, El Faiz A, Hafidi M (2016) Growth of date palm (Phoenix dactylifera L.) in composts of olive oil mill waste with organic household refuse. Compost Sci Util 24(4):273–280. https://doi.org/10.1080/1065657X.2016.1171738

    Article  Google Scholar 

  • Baslam M, Pascual I, Sánchez-Díaz M, Erro J, García-Mina JM, Goicoechea N (2011) Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi is conditioned by the source of phosphorus nutrition. J Agric Food Chem 59(20):11129–11140. https://doi.org/10.1021/jf202445y

    Article  CAS  PubMed  Google Scholar 

  • Baslam M, Qaddoury A, Goicoechea N (2014) Role of native and exotic mycorrhizal symbiosis to develop morphological, physiological and biochemical responses coping with water drought of date palm, Phoenix dactylifera. Trees 28(1):161–172. https://doi.org/10.1007/s00468-013-0939-0

    Article  CAS  Google Scholar 

  • Behera BC, Yadav H, Singh SK, Mishra RR, Sethi BK, Dutta SK, Thatoi HN (2017) Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. J Genet Eng Biotechnol 15(1):169–178. https://doi.org/10.1016/j.jgeb.2017.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Laouane R, Ait-El-Mokhtar M, Anli M, Boutasknit A, Ait Rahou Y, Raklami A, Oufdou K, Wahbi S, Meddich A (2020a) Green compost combined with mycorrhizae and rhizobia: a strategy for improving alfalfa growth and yield under field conditions. Gesunde Pflanz 73(2):193–207. https://doi.org/10.1007/s10343-020-00537-z

    Article  CAS  Google Scholar 

  • Ben-Laouane R, Baslam M, Ait-El-Mokhtar M, Anli M, Boutasknit A, Ait-Rahou Y, Toubali Y, Mitsui T, Oufdou K, Wahbi S, Meddich A (2020b) Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity. Microorganisms 8(11):1695. https://doi.org/10.3390/microorganisms8111695

    Article  CAS  PubMed Central  Google Scholar 

  • Bharti N, Barnawal D, Wasnik K, Tewari SK, Kalra A (2016) Co-inoculation of Dietzia natronolimnaea and Glomus intraradices with vermicompost positively influences Ocimum basilicum growth and resident microbial community structure in salt affected low fertility soils. Appl Soil Ecol 100:211–225. https://doi.org/10.1016/j.apsoil.2016.01.003

    Article  Google Scholar 

  • Bouizgarne B, Oufdou K, Ouhdouch Y (2015) Actinorhizal and rhizobial-legume symbioses for alleviation of abiotic stresses. In: Arora NK (ed) Plant microbes symbiosis appl facet. Springer India, New Delhi, pp 273–295

    Google Scholar 

  • Boutasknit A, Ait-Rahou Y, Anli M, Ait-El-Mokhtar M, Ben-Laouane R, Meddich A (2020) Improvement of garlic growth, physiology, biochemical traits, and soil fertility by Rhizophagus irregularis and compost. Gesunde Pflanz 73(2):149–160. https://doi.org/10.1007/s10343-020-00533-3

    Article  CAS  Google Scholar 

  • Boutasknit A, Anli M, Tahiri A, Raklami A, Ait-El-Mokhtar M, Ben-Laouane R, Ait Rahou Y, Boutaj H, Oufdou K, Wahbi S, El Modafar C, Meddich A (2021) Potential effect of horse manure-green waste and olive pomace-green waste composts on physiology and yield of garlic (Allium sativum L.) and soil fertility. Gesunde Pflanz. https://doi.org/10.1007/s10343-020-00511-9

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Bresson LM, Koch C, Le Bissonnais Y, Barriuso E, Lecomte V (2001) Soil surface structure stabilization by municipal waste compost application. Soil Sci Soc Am J 65(6):1804. https://doi.org/10.2136/sssaj2001.1804

    Article  CAS  Google Scholar 

  • Bücking H, Liepold E, Ambilwade P (2012) The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. In: Dhal NK, Sahu SC (eds) Plant Sci., 1st edn. IntechOpen, Rijika, pp 107–138

    Google Scholar 

  • Carnot AC, Desire T, Caustel DKD, Armand N, Emmanuel EL, Ledoux NDG, Annie NN, Zachée A (2017) Effect of the hydric factor and arbuscular mycorrhizal fungi (AMF) on the severity of Phytophthora colocasiae. Plant 5(4):61–67. https://doi.org/10.11648/j.plant.20170504.11

    Article  Google Scholar 

  • Diagne N, Ndour M, Djighaly PI, Ngom D, Ngom MCN, Ndong G, Svistoonoff S, Cherif-Silini H (2020) Effect of Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhizal fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq.). Front Sustain Food Syst 4:1–8. https://doi.org/10.3389/fsufs.2020.601004

    Article  Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2(8):621–631. https://doi.org/10.1038/nrmicro954

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Ekin Z (2019) Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability 11:3417. https://doi.org/10.3390/su11123417

    Article  CAS  Google Scholar 

  • Ergin SF, Gülser F (2016) Effect of mycorrhiza on growth criteria and phosphorus nutrition of lettuce (Lactuca sativa L.) under different phosphorus application rates. Eurasian J Soil Sci 5:275. https://doi.org/10.18393/ejss.2016.4.275-278

    Article  Google Scholar 

  • Essalimi B, Esserti S, Rifai LA, Koussa T, Makroum K, Belfaiza M, Rifai S, Venisse JS, Faize L, Alburquerque N, Burgos L, El Jadoumi S, Faize M (2022) Enhancement of plant growth, acclimatization, salt stress tolerance and verticillium wilt disease resistance using plant growth-promoting rhizobacteria (PGPR) associated with plum trees (Prunus domestica). Sci Hortic 291:110621

    Article  Google Scholar 

  • FAOSTAT (2019) Food and agriculture organization of the United Nations statistics division. http://www.fao.org/faostat/en/#data/QC. Accessed 15 Feb 2021

  • Fitter AHH, Helgason T, Hodge A (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: Implications for sustainable agriculture. Fungal Biol Rev 25(1):68–72. https://doi.org/10.1016/j.fbr.2011.01.002

    Article  Google Scholar 

  • Flores-Félix JD, Menéndez E, Rivera LP, Marcos-García M, Martínez-Hidalgo P, Mateos PF, Martínez-Molina E, Velázquez ME, García-Fraile P, Rivas R (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176(6):876–882. https://doi.org/10.1002/jpln.201300116

    Article  CAS  Google Scholar 

  • Gaiotti F, Marcuzzo P, Belfiore N, Lovat L, Fornasier F, Tomasi D, Bel N, Lovat L, Fornasier F, Tomasi D (2017) Influence of compost addition on soil properties, root growth and vine performances of Vitis vinifera cv Cabernet sauvignon. Sci Hortic 225:88–95. https://doi.org/10.1016/j.scienta.2017.06.052

    Article  Google Scholar 

  • Garg N, Chandel S (2011) Effect of mycorrhizal inoculation on growth, nitrogen fi xation, and nutrient uptake in Cicer arietinum (L.) under salt stress. Turkish J Agric 35:205–214. https://doi.org/10.3906/tar-0908-12

    Article  CAS  Google Scholar 

  • Gharib FA, Moussa LA, Massoud ON (2008) Effect of compost and bio-fertilizers on growth, yield and essential oil of sweet marjoram (Majorana hortensis) plant. Int J Agric Biol 10(4):381–382

    Google Scholar 

  • Gobat J‑M, Aragno M, Matthey W (2010) Le sol vivant: bases de pédologie—Biologie des sols [Living soil: bases of pedology—Soil biology], 3rd edn. Les Presses polytechniques et universitaires romandes, Lausanne

    Google Scholar 

  • Govedarica-Lucic A, Perkovic G (2015) Mineral content in a salad leaf (Lactuca sativa L.) depending of the genotype and applied agricultural measures. Genetika 47(3):951–958. https://doi.org/10.2298/GENSR1503951G

    Article  Google Scholar 

  • Ismail H, Mirza B (2015) Evaluation of analgesic, anti-inflammatory, anti-depressant and anti-coagulant properties of Lactuca sativa (CV. Grand Rapids) plant tissues and cell suspension in rats. BMC Complement Altern Med 15:199. https://doi.org/10.1186/s12906-015-0742-0

    Article  PubMed  PubMed Central  Google Scholar 

  • de Jaeger C, Voronska E, Fraoucene N, Cherin P (2012) Exposition chronique aux pesticides, santé et longévité. Rôle de notre alimentation. Med Longevite 4:75–92. https://doi.org/10.1016/j.mlong.2012.05.002

    Article  Google Scholar 

  • Jayne B, Quigley M (2014) Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza 24(2):109–119. https://doi.org/10.1007/s00572-013-0515-x

    Article  PubMed  Google Scholar 

  • Kang S‑M, Joo G‑J, Hamayun M, Na C‑I, Shin D‑H, Kim HY, Hong J‑K, Lee I‑J (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31(2):277–281. https://doi.org/10.1007/s10529-008-9867-2

    Article  CAS  PubMed  Google Scholar 

  • Kang S‑M, Khan AL, Waqas M, You Y‑H, J‑GJ‑H K, J‑GJ‑H K, Hamayun M, Lee I‑J (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9(1):673–682. https://doi.org/10.1080/17429145.2014.894587

    Article  CAS  Google Scholar 

  • Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee I‑JJ (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64. https://doi.org/10.1016/j.ejbt.2016.02.001

    Article  Google Scholar 

  • Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148(3):511–517. https://doi.org/10.1046/j.1469-8137.2000.00776.x

    Article  CAS  PubMed  Google Scholar 

  • Lashari MS, Liu Y, Li L, Pan W, Fu J, Pan G, Jufeng Z, Jinwei Z, Zhang X, Yu X (2013) Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. F Crop Res 144:113–118

    Article  Google Scholar 

  • Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65(6):1474–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Bi Y, Kong W, Yu H, Lang Q, Miao Y (2015) Effects of arbuscular mycorrhizal fungi on ecological restoration in coal mining areas. Russ J Ecol 46:431–437. https://doi.org/10.1134/S1067413615050173

    Article  CAS  Google Scholar 

  • Lorck H (1948) Production of hydrocyanic acid by bacteria. Physiol Plant 1(2):142–146. https://doi.org/10.1111/j.1399-3054.1948.tb07118.x

    Article  CAS  Google Scholar 

  • McLaughlin MJ, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C (2011) The chemical nature of P accumulation in agricultural soils-implications for fertiliser management and design: an Australian perspective. Plant Soil 349(1):69–87. https://doi.org/10.1007/s11104-011-0907-7

    Article  CAS  Google Scholar 

  • Meddich A, Jaiti F, Bourzik W, El Asli A, Hafidi M (2015) Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Sci Hortic 192:468–474

    Article  Google Scholar 

  • Mehnaz S, Deeba NB, George L (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20(12):1614–1623. https://doi.org/10.4014/jmb.1005.05014

    Article  CAS  PubMed  Google Scholar 

  • Noumedem JAK, Djeussi DE, Hritcu L, Mihasan M, Kuete V (2017) Lactuca sativa. In: Medicinal spices and vegetables from Africa. Elsevier, Amsterdam, pp 437–449 https://doi.org/10.1016/B978-0-12-809286-6.00020-0

    Chapter  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, Washington

    Google Scholar 

  • Onyeze RC, Onah GT, Igbonekwu CC (2013) Isolation and characterization of nitrogen-fixing bacteria in the soil. Int J Life Sci Biotechnol Pharma Res 2(3):438–445

    Google Scholar 

  • Pandorf M, Pourzahedi L, Gilbertson L, Lowry GV, Herckes P, Westerhoff P (2020) Graphite nanoparticle addition to fertilizers reduces nitrate leaching in growth of lettuce (Lactuca sativa). Environ Sci Nano 7:127–138. https://doi.org/10.1039/C9EN00890J

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158–161

    Article  Google Scholar 

  • Population Reference Bureau (2017) World population data sheet with a special focus on youth. http://www.worldpopdata.org. Accessed 15 Mar 2020

  • Raklami A, Bechtaoui N, Tahiri A‑I, Anli M, Meddich A, Oufdou K (2019) Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Front Microbiol 10:1–11. https://doi.org/10.3389/fmicb.2019.01106

    Article  Google Scholar 

  • Raklami A, El Gharmali A, Ait Rahou Y, Oufdou K, Meddich A (2020) Compost and mycorrhizae application as a technique to alleviate Cd and Zn stress in Medicago sativa. Int J Phytoremediation 23(2):190–201. https://doi.org/10.1080/15226514.2020.1803206

    Article  CAS  PubMed  Google Scholar 

  • Riah W, Laval K, Laroche-Ajzenberg E, Mougin C, Latour X, Trinsoutrot-Gattin I (2014) Effects of pesticides on soil enzymes: a review. Environ Chem Lett 12(2):257–273. https://doi.org/10.1007/s10311-014-0458-2

    Article  CAS  Google Scholar 

  • Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde SS, Dhakephalkar PK, Chopade BA (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 21(6):556–566. https://doi.org/10.4014/jmb.1012.12006

    Article  CAS  PubMed  Google Scholar 

  • Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali F, Gerbino R, Cei FP, Borin S, Sorlini C, Zocchi G, Daffonchio D (2014) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17(2):316–331. https://doi.org/10.1111/1462-2920.12439

    Article  PubMed  Google Scholar 

  • Rouphael Y, Cardarelli M, Colla G (2015) Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminium toxicity in zucchini squash. Sci Hortic 188:97–105. https://doi.org/10.1016/j.scienta.2015.03.031

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  • Sharif M, Claassen N (2011) Action mechanisms of arbuscular mycorrhizal fungi in phosphorus uptake by Capsicum annuum L. Pedosphere 21(4):502–511. https://doi.org/10.1016/S1002-0160(11)60152-5

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2(1):1–14. https://doi.org/10.1186/2193-1801-2-587

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New York

    Google Scholar 

  • Smith SE, Jakobsen I, Gronlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156(3):1050–1057. https://doi.org/10.1104/pp.111.174581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419. https://doi.org/10.1590/S1415-475738420150053

    Article  PubMed  PubMed Central  Google Scholar 

  • Toubali S, Tahiri A, Anli M, Symanczik S, Boutasknit A, Ait-El-Mokhtar M, Ben-Laouane R, Oufdou K, Ait-Rahou Y, Ben-Ahmed H, Jemo M, Hafidi M, Meddich A (2020) Physiological and biochemical behaviors of date palm vitroplants treated with microbial consortia and compost in response to salt stress. Appl Sci 10(23):8665. https://doi.org/10.3390/app10238665

    Article  CAS  Google Scholar 

  • Visen A, Bohra M, Singh PN, Srivastava PC, Kumar S, Sharma AK, Chakraborty B (2017) Two pseudomonad strains facilitate AMF mycorrhization of litchi (Litchi chinensis Sonn.) and improving phosphorus uptake. Rhizosphere 3:196–202. https://doi.org/10.1016/j.rhisph.2017.04.006

    Article  Google Scholar 

  • Vukobratović M, Lončarić Z, Vukobratović Ž, Mužić M (2018) Use of composted manure as substrate for lettuce and cucumber seedlings. Waste Biomass Valor 9(1):25–31

    Article  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, Sk ZA (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24. https://doi.org/10.1007/s12649-016-9755-2

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Hokin H, Tani T, Kadota G (1977) Phenylalanine ammonia-lyase in relation to the crown rust resistance of oat leaves. J Phytopathol 90(3):203–211. https://doi.org/10.1111/j.1439-0434.1977.tb03238.x

    Article  CAS  Google Scholar 

  • Yildirim E, Karlidag H, Turan M, Dursun A, Goktepe F (2011) Promotion of broccoli by plant growth promoting rhizobacteria. Hort Sci 46(6):932–936

    CAS  Google Scholar 

  • Yildirim E, Turan M, Donmez MF (2008) Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth: promoting rhizobacteria. Rom Biotechnol Lett 13(5):3933–3943

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the European Union’s Horizon 2020 research and innovation program under grant agreement N°862555 and the Socially Responsible Projects, Cadi Ayyad University UCAM/RSU 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelilah Meddich.

Ethics declarations

Conflict of interest

A. Tahiri, A. Raklami, N. Bechtaoui, M. Anli, A. Boutasknit, K. Oufdou and A. Meddich declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahiri, Ai., Raklami, A., Bechtaoui, N. et al. Beneficial Effects of Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Compost on Lettuce (Lactuca sativa) Growth Under Field Conditions. Gesunde Pflanzen 74, 219–235 (2022). https://doi.org/10.1007/s10343-021-00604-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-021-00604-z

Keywords

Schlüsselwörter

Navigation