Skip to main content

Advertisement

Log in

Site and stand characteristics related to surface erosion occurrence in forests of Catalonia (Spain)

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

This study aims at identifying forest areas affected by surface erosion in Catalonia. It analyses the characteristics of forests that are related to erosion occurrence. The data on erosion observations and stand variables were obtained from the Third Spanish National Forest Inventory (2000–2001). We used the classification tree method to study the presence–absence of surface erosion in four different forest types, pure coniferous, pure broadleaf and mixed stands as well in forested semiarid areas. The method provided a description of the site and stand variables, which are associated with the occurrence of surface erosion. The results revealed that forest type and stand structure are strongly related to the probability of surface erosion occurrence. In pure broadleaf forests, surface erosion occurrence was greater in dense stands, whereas in pure coniferous pine forest, the erosion occurrence was greater in sparse stands. Surface erosion occurrence was the highest in stands dominated by Fagus sylvatica and Abies alba. In order to estimate the erosion probabilities of stands, we converted the results of the classification tree analysis into erosion probabilities and mapped forest areas as low, moderate or high surface erosion risk. The accuracy of the erosion probabilities was assessed using the ROC curve, which gave a fair level (0.75) of accuracy for the total classification tree, the best (0.78) for pure broadleaf and the lowest (0.66) for mixed forest. The results of this study can be applied in future forest management planning aiming to reduce erosion risk in forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barbier S, Balandier P, Gosselin F (2009) Influence of several tree traits on rainfall partitioning in temperate and boreal forest: a review. Ann For Sci 66:602

    Article  Google Scholar 

  • BDN (2001) Mapa Forestal de España. MFE50 Escala 1:50 000 Cataluña: Lerida, Gerona, Barcelona, Tarragona. Organismo Autónomo Parques Nacionales, Madrid

    Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter–decomposition, humus formation, carbon sequestration, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Blanco H, Lal R (2008) Principles of soil conservation and management. Springer, Netherlands

    Google Scholar 

  • Brandt J (1987) The effect of different types of forest management on the transformation of rainfall energy by the canopy in relation to soil erosion. In: Proceedings of the forest hydrology watershed management conference Vancouver, BC (1987), IAHS Publication No. 167, pp 213–222

  • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

    Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, Belmont

    Google Scholar 

  • Brooks SM, Spencer T (1995) Vegetation modification of rainfall characteristics Implication for rainfall erositivity following logging in Sabah, Malaysia. J Trop For Sci 7(3):435–446

    Google Scholar 

  • Calder IR (2001) Canopy processes: implications for transpiration, interception and splash induced erosion, ultimately for forest management and water resources. Plant Ecol 153:203–214

    Article  Google Scholar 

  • Casas MC, Herrero M, Ninyerola M, Pons X, Rodríguez R, Rius A, Redaño A (2007) Analysis and objective mapping of extreme daily rainfall in Catalonia. Int J Climatol 27:399–409

    Article  Google Scholar 

  • Clavero P, Martín Vide J, Raso JM (1997) Atles climàtic de Catalunya (ACC). Institut Cartogràfic de Catalunya i Departament de Medi Ambient, Generalitat de Catalunya, Barcelona

    Google Scholar 

  • Coll L, González-Olabarria JR, Mola-Yudego B, Pukkala T, Messier C (2011) Predicting understory maximum shrubs cover using altitude and overstory basal area in different Mediterranean forest. Eur J For Res 130:55–65

    Article  Google Scholar 

  • Cook EF, Goldman L (1984) Empiric comparison of multivariate analytic techniques: advantages and disadvantages of recursive portioning. J Chronic Dis 37:721–731

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Morla C, Sainz H (2005) Los Bosques Ibéricos–Una interpretación geobotánica, 4th edn. Editorial planeta, Barcelona

    Google Scholar 

  • Covert SA, Robinchaud PR, Elliot WJ, Link TE (2005) Evaluation of runoff prediction from WEPP-based erosion models for harvesting and burned forest watershed. Trans ASAE 48(3):1091–1100

    Google Scholar 

  • DeBano LF (2000) The role of fire and soil heating on water repellency in wildland environments: a review. J Hydrol 231–232:195–206

    Article  Google Scholar 

  • DGCN (2001) Tercer Inventario Forestal Nacional (1997–2006) Cataluña. Ministerio de Medio Ambiente, Madrid

  • DGCN (2002) Plan Forestal Español 2002–2032. Ministerio de Medio Ambiente. Dirección General de Conservación de la Naturaleza, Madrid

    Google Scholar 

  • DGCN (2004) Inventario nacional erosión suelos. Barcelona, Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Dissmeyer G, Foster GR (1980) A guide for predicting sheet and rill erosion on forest land. Technical publication. USDA Forest Service, Atlanta

    Google Scholar 

  • Dun S, Wu JQ, Elliot WJ, Robichaud PR, Flanagan DC, Frankenberger JR, Brown RE, Xu AC (2009) Adapting the water erosion prediction project (WEPP) model for forest application. J Hydrol 366:46–54

    Article  Google Scholar 

  • Edeso JM, Merino A, González MJ, Mapauri P (1999) Soil erosion under different harvesting managements in steep forestlands from Northern Spain. Land Degrad Dev 10:79–88

    Article  Google Scholar 

  • Elliot WJ, Robichaud PR (2001) Comparing erosion risks from forest operations to wildfire. Proceedings of the 2001 International Mountain Logging and 11th Pacific Northwest Skyline Symposium, Seattle, Washington. University of Washington, Seattle

    Google Scholar 

  • Elliot WJ, Hall DE, Graves SR (1999) Predicting sedimentation from forest roads. J For 97(8):23–29

    Google Scholar 

  • FAO (2006) World reference base for soil resources 2006—a framework for international classification, correlation and communication. World Soil Resources Reports 103, Rome

  • Fernández S, Marquínez J, Menéndez Duarte R (2005) A susceptibility model for post wildfire soil erosion in a temperate oceanic mountain area of Spain. Catena 61:256–272

    Article  Google Scholar 

  • Ferri C, Flach P, Hernández-Orallo J (2003) Decision trees for ranking: effect of new smoothing methods, new splitting criteria and simple pruning methods. Technical report, DSIC, UPV

  • Flanagan DC, Livingston SJ (1995) Water erosion prediction project (WEPP) version 95.7 user summary. West Lafayette, IN. NSERL Report No. 11. USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, Ind

  • Gómez-Gutiérrez A, Schnabel S, Lavado-Contador JF (2009) Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecol Model 220:3630–3637

    Article  Google Scholar 

  • González JR, Pukkala T (2007) Characterization of forest fires in Catalonia (north-east Spain). Eur J of For Res 126:421–429

    Article  Google Scholar 

  • González-Hidalgo JC, Peña-Monne JL, de Luis M (2007) A review of daily soil erosion in Western Mediterranean areas. Catena 71:193–199

    Article  Google Scholar 

  • González-Olabarria JR, Pukkala T (2011) Integrating fire risk considerations in landscape level forest planning. For Ecol Manag 261:278–287

    Article  Google Scholar 

  • Gracia C, Burriel JA, Ibáñez JJ, Mata T, Vayreda J (2004) Inventari Ecologic i Forestal de Catalunya. CREAF, Catalunya

  • Grimm M, Jones R, Montanarella L (2002) Soil erosion risk in europe. EUR 19939 EN, European soil bureau. Institute for environment & sustainability. JRC Ispra, Italy

    Google Scholar 

  • Han J, Kamber M (2001) Data mining: concepts and techniques. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • ICONA (1991) Plan Nacional de lucha contra la erosión. Ministerio de Agricultura, pesca y alimentación. Instituto Nacional para la conservación de la naturaleza, Madrid

    Google Scholar 

  • Jones C (2001) RUSLE applications on Arizona rangelands. Arizona Ranchers’ Management guide. Rangeland Manag 73–78

  • Kang W, Deng X, Zhao Z (2008) Effects of canopy interception on energy conversion processes in a Chinese fir plantation ecosystem. Front For China 3:264–270

    Article  Google Scholar 

  • Karr JR, Dudley DR (1981) Ecological perspective on water quality goals. Environ Manag 5:55–68

    Article  Google Scholar 

  • Laflen JM, Elliot WJ, Flanagan DC, Meyer CR, Nearing MA (1997) WEPP-predicting water erosion using a process based model. J Soil Water Conserv 52:96–102

    Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Article  PubMed  CAS  Google Scholar 

  • Lana X, Burgueño A (1998) Spatial and temporal characterization of annual extreme droughts in Catalonia (Northeast Spain). Int J Climatol 18:93–110

    Article  Google Scholar 

  • Merlo M, Croitoru L (2005) Valuing Mediterranean forest: towards total economic value. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Morgan RPC (2005) Soil erosion and conservation, 3rd edn. Blackwell, Oxford

    Google Scholar 

  • Morgan RPC, Quinton JN, Smith RE, Govers G, Poesen JWA, Auerswald K, Chisci G, Torri D, Styczen ME (1998) The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf Process Landf 23:527–544

    Article  Google Scholar 

  • Morris GL, Fan J (1998) Reservoir sedimentation handbook–design and management of dams, reservoirs and watersheds for sustainable use. McGraw-Hill, New York

    Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841

    Article  Google Scholar 

  • Palahi M, Mavsar R, Gracia C, Birot Y (2008) Mediterranean forest under focus. Int For Rev 10:676–688

    Google Scholar 

  • Pierson FB, Robichaud PR, Moffet CA, Spaeth KE, Williams CJ, Hardegree SP, Clark PE (2008) Soil water repellency and infiltration in coarse-textured soils of burned and unburned sagebrush ecosystems. Catena 74:98–108

    Article  Google Scholar 

  • Planchais I, Sinoquet H (1998) Foliage determinants of light interception in sunny and shaded branches of Fagus sylvatica (L.). Agric For Met 89:241–253

    Article  Google Scholar 

  • Provost F, Domingos P (2003) Tree induction for probability based ranking. Mach Learn 52(3):199–215

    Article  Google Scholar 

  • Razafindrabe BHN, He B, Inoue S, Ezaki T, Shaw R (2010) The role of stand density in controlling soil erosion: implication to sediment – related disasters in Japan. Environ Monit Assess 160:337–354

    Google Scholar 

  • Renard KG, Foster GR, Weessies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture, Agriculture Handbook 703

  • Rouget M, Richardson DM, Lavorel S, Vayreda J, Gracia C, Milton SJ (2001) Determinants of distribution of six pinus species in Catalonia, Spain. J Veg Sci 12:491–502

    Article  Google Scholar 

  • Sayer E (2006) Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81:1–31

    Article  PubMed  Google Scholar 

  • Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forest of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109

    Article  Google Scholar 

  • Sesnie SE, Gessler PE, Finegan B, Thessler S (2008) Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sens Environ 112(5):2145–2159

    Article  Google Scholar 

  • Soil Atlas of Europe (2006) 1 km Raster version of the European soil database (v. 2.0). In: Marc Van Liedekerke, Arwyn Jones, Panos Panagos (eds) European Soil Bureau Network & European Commission, EUR 19945 EN

  • Spaeth K, Pierson FB, Weltz MA, Blackburn WH (2003) Evaluation of USLE and RUSLE estimated soil loss on rangeland. J Range Manag 56:234–246

    Article  Google Scholar 

  • Therneau TM, Atkinson EJ (1997) An introduction to recursive partitioning using the RPART routines. Technical Report 61, Mayo Clinic, Section of Statistics

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Thuiller W, Vayreda J, Pino J, Sabate S, Lavorel S, Gracia C (2003) Large-scale environmental correlates of forest tree distribution in Catalonia (NE Spain). Global Ecol Biogeogr 12:313–325

    Article  Google Scholar 

  • Tóth N, Pataki B (2007) On classification confidence and ranking using decision trees. In: Proceedings of 11th international conference on intelligent engineering systems, pp 133–138

  • Trabaud L (1994) Post-fire plant community dynamics in the Mediterranean Basin. In: Moreno JM, Oechel WC (eds) ‘The role of fire in the Mediterranean-Type ecosystems. Ecological studies, Springer, New York, pp 1–15

    Chapter  Google Scholar 

  • Vayssiéres MP, Plant RE, Allen-Diaz BH (2000) Classification trees: an alternative non-parametric approach for predicting species distribution. J Veg Sci 11:679–694

    Article  Google Scholar 

  • Wischmeier WH, Smith DP (1978) Predicting rainfall erosion losses–a guide for selection for conservation planning. Agricultural Handbook (US Dept of Agriculture) 537

  • Zhang H, Wang Q, Dai L, Guofan S, Tang L, Wang S, Gu H (2006) Quantifying soil erosion with GIS-based RUSLE under different forest management options in Jianchang forest farm. Sci China E Technol Sci 49(Supp. 1):160–166

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Centre Tecnològic Forestal de Catalunya for providing the part of the necessary data and the Graduate School in Forest Sciences for the financial support of this study. Our special thanks to Dr Blas Mola Yudego for his valuable contribution to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Selkimäki.

Additional information

Communicated by A. Merino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selkimäki, M., González-Olabarria, J.R. & Pukkala, T. Site and stand characteristics related to surface erosion occurrence in forests of Catalonia (Spain). Eur J Forest Res 131, 727–738 (2012). https://doi.org/10.1007/s10342-011-0545-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-011-0545-x

Keywords

Navigation