Skip to main content

Advertisement

Log in

Acetic Acid Alleviates Salinity Damage and Improves Fruit Yield in Strawberry by Mediating Hormones and Antioxidant Activity

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Salinity in soil and irrigation water is a common phenomenon potentially reducing strawberry growth and yield in greenhouse and field conditions. Acetic acid (AA) was reported to improve abiotic stress tolerance in some plants. Its role in the strawberry under salinity stress remains unexplored. A greenhouse hydroponic experiment was carried out. Strawberry (Fragaria×ananassa Duch. cv. Paros) plants were potted in 3 kg plastic pots filled with a mixture of cocopeat/perlite (1:1 v/v). In the current study the influence of AA (1 and 2 mM) supplementation under salinity (40 mM NaCl) on plant growth, yield and hormone contents was evaluated. Salinity decreased plant biomass production compared to the control. Application of AA (2 mM) tended to increase (2%) leaf fresh weight, superoxide dismutase (SOD), and catalase (CAT) enzyme activity compared to control under salinity. Salinity also decreased fruit yield by 66%, was considerably reverted by AA treatment and this reduction reached 49% in 40 mM NaCl +1 mM acetic acid (AAS) treatment. Exogenous AA (1 mM) treated plants suffered less decrease plant biomass due to the enhancement of endogenous hormonal content in strawberry plants. Concentrations of abscisic acid (ABA), gibberellin (GA), salicylic acid (SA) and cytokinin (CK) were determined using HPLC mass spectrometry. ABA was found to be 70% increased in non-treated plants under saline condition, but this increase was 21% in AAS treatment. Under saline condition, CK content was affected by AA and increased in both AAS and in 40 mM NaCl +2 mM AA (AaS) treatments. During salinity stress condition, GA contents was increased in both AAS and AaS treatments compared to salinity stress alone. SA contents increased in AaS treatment, confirming its role in salinity tolerance. Collectively, our study suggested that exogenous AA could accelerate salinity resistance by enhancing some antioxidant enzyme activity and hormonal contents in strawberry plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60(4):1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agron 7(1):1–38

    Google Scholar 

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  Google Scholar 

  • Alqarawi AA, Allah AEF, Hashem A (2014) Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interact 9(1):802–810

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347 (2nd edit), p 32

  • Assaha DV, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    Article  PubMed  PubMed Central  Google Scholar 

  • Azooz MM (2009) Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. Int J Agric Biol 11(4):343–350

    CAS  Google Scholar 

  • Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. Abiot Stress Plants Mech Adapt 1:21–38. https://doi.org/10.5772/22331

    Article  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidase. Meth Enzymol 2:764–775. https://doi.org/10.1016/S0076-6879(55)02300-8

    Article  Google Scholar 

  • Cronan JE Jr, Laporte D (2005) Tricarboxylic acid cycle and glyoxylate bypass. EcoSal Plus. https://doi.org/10.1128/ecosalplus.3.5.2

    Article  PubMed  Google Scholar 

  • Del Amor FM, Martinez V, Cerda A (1999) Salinity duration and concentration affect fruit yield and quality, and growth and mineral composition of melon plants grown in perlite. HortSci 34(7):1234–1237

    Article  Google Scholar 

  • Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by Arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Faghih S, Ghobadi C, Zarei A (2017) Response of strawberry plant cv.‘Camarosa’to salicylic acid and methyl jasmonate application under salt stress condition. J Plant Growth Reg 36(3):651–659

    Article  CAS  Google Scholar 

  • Ferre P, Foufelle F (2007) SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res Paediatr 68(2):72–82

    Article  CAS  Google Scholar 

  • Graham IA, Eastmond PJ (2002) Pathways of straight and branched chain fatty acid catabolism in higher plants. Prog Lipid Res 41(2):156–181

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heintze A, Görlach J, Leuschner C, Hoppe P, Hagelstein P, Schulze-Siebert D, Schultz G (1990) Plastidic isoprenoid synthesis during chloroplast development: change from metabolic autonomy to a division-of-labor stage. Plant Physiol 93(3):1121–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MS, Hasanuzzaman M, Sohag MMH, Bhuyan MB, Fujita M (2019) Acetate-induced modulation of ascorbate: glutathione cycle and restriction of sodium accumulation in shoot confer salt tolerance in Lens culinaris Medik. Physiol Mol Biol Plants 25(2):443–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamali B, Eshghi S (2015) Salicylic acid-induced salinity redressal in hydroponically grown strawberry. Commun Soil Sci 46(12):1482–1493

    Article  CAS  Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Modarres Sanavy SAM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aus J Crop Sci 5(6):726–734

    CAS  Google Scholar 

  • Karlidag H, Yildirim E, Turan M (2009) Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Sci Agric 66(2):180–187

    Article  CAS  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    Article  PubMed  PubMed Central  Google Scholar 

  • Khodamoradi P, Amiri J, Eshghi S, Doulati BB (2020) Influence of humic acid on growth, and leaf and root mineral elements of Sabrina strawberry under salinity stress. J Sci Technol Greenhouse Cult. https://doi.org/10.47176/jspi.10.4.18401

    Article  Google Scholar 

  • Kim JM, To TK, Matsui A, Tanoi K, Kobayashi NI, Matsuda F, Bashir K (2017) Acetate-mediated novel survival strategy against drought in plants. Nat Plants 3(7):17097

    Article  CAS  PubMed  Google Scholar 

  • Mane AV, Saratale GD, Karadge BA, Samant JS (2011) Studies on the effects of salinity on growth, polyphenol content and photosynthetic response in Vetiveria zizanioides (L.) Nash. Emir J Food Agric 23(1):59–70

    Article  Google Scholar 

  • Mirfattahi Z, Eshghi S (2020) Inducing salt tolerance of strawberry (Fragaria × ananassa Duch) plants by acetate application. J Plant Nutr 43(12):1780–1793

    Article  CAS  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11

    Article  PubMed  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Ann Rev Plant Biol 48(1):109–136

    Article  CAS  Google Scholar 

  • Palma F, López-Gómez M, Tejera NA, Lluch C (2013) Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci 208:75–82

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Jha B (2010) Salt tolerance mechanisms in mangroves: a review. Trees 24:199–217

    Article  Google Scholar 

  • Rahman MM, Mostofa MG, Rahman MA, Islam MR, Keya SS, Das AK, Tran LSP (2019) Acetic acid: a cost-effective agent for mitigation of seawater-induced salt toxicity in mung bean. Sci Rep 9(1):1–15

    Article  Google Scholar 

  • Rasheed S, Bashir K, Kim JM, Ando M, Tanaka M, Seki M (2018) The modulation of acetic acid pathway genes in Arabidopsis improves survival under drought stress. Sci Rep 8(1):1–15

    Article  Google Scholar 

  • Ryu H, Cho YG (2015) Plant hormones in salt stress tolerance. J Plant Biol 58(3):147–155

    Article  CAS  Google Scholar 

  • Saeed W, Naseem S, Ali Z (2017) Strigolactones biosynthesis and their role in abiotic stress resilience in plants: a critical review. Front Plant Sci 8:1487

    Article  PubMed  PubMed Central  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarker U, Oba S (2020) The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front Plant Sci. https://doi.org/10.3389/fpls.2020.559876

    Article  PubMed  PubMed Central  Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21(4):329–340

    Article  CAS  PubMed  Google Scholar 

  • Shahid SA, Zaman M, Heng L (2018) Soil salinity: historical perspectives and a world overview of the problem. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham, pp 43–53

    Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Niu G, Wallace R, Masabni J, Gu M (2015) Relative salt tolerance of seven strawberry cultivars. Horticulturae 1(1):27–43

    Article  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65(2–3):270–281

    Article  CAS  Google Scholar 

  • Utsumi Y, Utsumi C, Tanaka M, Ha CV, Takahashi S, Matsui A, Okamoto Y (2019) Acetic acid treatment enhances drought avoidance in cassava (Manihot esculenta Crantz). Front Plant Sci 10:521

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16(1):1–10

    Article  Google Scholar 

  • Zolman BK, Martinez N, Millius A, Adham AR, Bartel B (2008) Identification and characterization of Arabidopsis indole-3-butyric acid response mutants defective in novel peroxisomal enzymes. Nat Genet 180(1):237–251

    CAS  Google Scholar 

Download references

Acknowledgements

This project was made possible through a Ph.D. position at Shiraz University (Zahra Mirfattahi). The authors are truly grateful to Shiraz University for covering experimental costs and providing the laboratory facilities.

Funding

This project was made possible through a Ph.D. position at Shiraz University (Zahra Mirfattahi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Eshghi.

Ethics declarations

Conflict of interest

Z. Mirfattahi and S. Eshghi declare that they have no competing interests.

Ethical standards

This study was approved by Shiraz University research ethics committee. Informed Consent: Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirfattahi, Z., Eshghi, S. Acetic Acid Alleviates Salinity Damage and Improves Fruit Yield in Strawberry by Mediating Hormones and Antioxidant Activity. Erwerbs-Obstbau 65, 1403–1412 (2023). https://doi.org/10.1007/s10341-023-00840-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-023-00840-9

Keywords

Navigation