Skip to main content

Advertisement

Log in

Invasion history and management of Eucalyptus snout beetles in the Gonipterus scutellatus species complex

  • Review
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Gonipterus scutellatus (Coleoptera: Curculionidae), once thought to be a single species, is now known to reside in a complex of at least eight cryptic species. Two of these species (G. platensis and G. pulverulentus) and an undescribed species (Gonipterus sp. n. 2) are invasive pests on five continents. A single population of Anaphes nitens, an egg parasitoid, has been used to control all three species of Gonipterus throughout the invaded range. Limited knowledge regarding the different cryptic species and their diversity significantly impedes efforts to manage the pest complex outside the native range. In this review, we consider the invasion and taxonomic history of the G. scutellatus cryptic species complex and the implications that the cryptic species diversity could have on management strategies. The ecological and biological aspects of these pests that require further research are identified. Strategies that could be used to develop an ecological approach towards managing the G. scutellatus species complex are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Sources: Cadahia (1980), Cadahia (1986, 1931), Clark (1937), Cowles and Downer (1995), EPPO (2005), Haines (2006), Lanfranco and Dungey (2001), Mally (1924), Mansilla Vazquez (1992), Mapondera et al. (2012), Mazza et al. (2015), Miller (1927), Tooke (1955), Pinet (1986), Rabassa and Perrin (1995), Rodas (2018), Rosado-Neto and Marques (1996) and Williams et al. (1951)

Fig. 3

Sources: Cadahia (1980), Clark (1931, 1937), Cowles and Downer (1995), EPPO (2005), Frappa (1950), Haines (2006), Hanks et al. (2000), Kevan (1946), Lanfranco and Dungey (2001), Mally (1924), Mansilla Vazquez (1992), Mapondera et al. (2012), Marelli (1926, 1927), Mazza et al. (2015), Pinet (1986), Rabasse and Perrin (1979), Rodas (2018), Rosado-Neto and Marques (1996), Tooke (1955) and Williams et al. (1951)

Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal AA, Karban R, Colfer RG (2000) How leaf domatia and induced plant resistance affect herbivores, natural enemies and plant performance. Oikos 89:70–80

    Article  Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Andrew RL, Peakall R, Wallis IR, Wood JT, Knight EJ, Foley WJ (2005) Marker-based quantitative genetics in the wild? The heritability and genetic correlation of chemical defenses in Eucalyptus. Genetics 171:1989–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrew RL, Wallis IR, Harwood CE, Henson M, Foley WJ (2007) Heritable variation in the foliar secondary metabolite sideroxylonal in Eucalyptus confers cross-resistance to herbivores. Oecologia 153:891–901

    Article  PubMed  Google Scholar 

  • Atkinson PR (1999) Eucalyptus snout beetle, Gonipterus scutellatus Gyll., and its control in South Africa through biological, cultural and chemical means. ICFR Bulletin. https://www.icfr.ukzn.ac.za/publications/eucalyptus-snout-beetle-gonipterus-scutellatus-gyll-and-its-control-south-africa. Accessed 9 Nov 2018

  • Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messean A, Moonen A, Ratnadass A, Ricci P, Sara J-L, Sattin M (2015) Eight principles of integrated pest management. Agron Sustain Dev 35:119–1215

    Article  Google Scholar 

  • Beard JJ (1999) Taxonomy and biological control: Neoseiulus cucumeris (Acari: Phytoseiidae), a case study. Aust Entomol 38:51–59

    Article  Google Scholar 

  • Beéche Cisternas MA, Rothmann ST (2000) Detection and control of the Gum Tree Weevil Gonipterus scutellatus in Chile (Coleoptera: Curculionidae). Paper presented at the international congress of entomology XXI Brazil, 20–26 Aug

  • Bennett BM (2011) A global history of australian trees. J Hist Biol 44:125–145

    Article  PubMed  Google Scholar 

  • Berkov A (2002) The impact of redefined species limits in Palame (Coleoptera: Cerambycidae: Lamiinae: Acanthocinini) on assessments of host, seasonal, and stratum specificity. Biol J Linn Soc Lond 76:195–209

    Article  Google Scholar 

  • Burns JM, Janzen DH, Hajibabaei M, Hallwachs W, Hebert PDN (2008) DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservación Guanacaste, Costa Rica. Proc Natl Acad Sci USA 105:6350–6355

    Article  PubMed  Google Scholar 

  • Cadahia D (1980) Proximidad de dos nuevos enemigos de los Eucalyptus en España. Bol Serv Plagas 6:165–192

    Google Scholar 

  • Cadahia D (1986) Importance des insectes ravageurs de l’eucalyptus en région méditerranéenne. EPPO Bull 16:265–283

    Article  Google Scholar 

  • Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58

    Article  CAS  PubMed  Google Scholar 

  • Ciesla WM (1991) Cypress aphid: a new threat to Africa’s forests. http://www.fao.org/docrep/u4200e/u4200e09.htm. Accessed 22 Aug

  • Clark AF (1931) The parasite control of Gonipterus scutellatus Gyll. New Zea J Sci Technol 13:22–28

    Google Scholar 

  • Clark AF (1937) A survey of the insect pests of Eucalyptus in New Zealand. New Zea J Sci Technol 19:750–761

    Google Scholar 

  • Clarke AR (1990) The control of Nezara viridula L. with introduced egg parasitoids in Australia. A review of a ‘landmark’ example of classical biological control. Aust J Agric Res 41:1127–1146

    Article  Google Scholar 

  • Clarke AR, Paterson S, Pennington P (1998) Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae) oviposition on seven naturally co-occurring Eucalyptus species. For Ecol Manag 110:89–99

    Article  Google Scholar 

  • Clissold FJ, Sanson GD, Read J, Simpson SJ (2009) Gross vs. net income: how plant toughness affects performance of an insect herbivore. Ecology 90:3393–3405

    Article  PubMed  Google Scholar 

  • Cloyd RA, Bethke JA (2011) Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments. Pest Manag Sci 67:3–9

    Article  CAS  PubMed  Google Scholar 

  • Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733

    Article  Google Scholar 

  • Cordero Rivera A, Santolamazza Carbone S (2000) The effect of three species of Eucalyptus on growth and fecundity of the Eucalyptus snout beetle (Gonipterus scutellatus). Forestry 73:21–29

    Article  Google Scholar 

  • Cordero Rivera A, Santolamazza Carbone S, Andrés JA (1999) Life cycle and biological control of the Eucalyptus snout beetle (Coleoptera, Curculionidae) by Anaphes nitens (Hymenoptera, Mymaridae) in north-west Spain. Agric For Entomol 1:103–109

    Article  Google Scholar 

  • Cortesero AM, Stapel JO, Lewis WJ (2000) Understanding and manipulating plant attributes to enhance biological control. Biol Control 17:35–49

    Article  Google Scholar 

  • Cowles RS, Downer JA (1995) Eucalyptus snout beetle detected in California. Calif Agric 49:38–40

    Article  Google Scholar 

  • CPF (2013) Producción Biocontrolador Anaphes nitens Temporada 2012. http://www.cpf.cl/noticias/vernoticia.php?idnoticia=230. Accessed 8 Jan 2018

  • Cronin JT, Strong DR (1993) Superparasitism and mutual interference in the egg parasitoid Anagrus delicatus (Hymenoptera: Mymaridae). Ecol Entomol 18:293–302

    Article  Google Scholar 

  • Day RK, Kairo MT, Abraham YJ, Kfir R, Murphy ST, Mutitu KE, Chilima CZ (2003) Biological control of Homopteran pests of conifers in Africa. In: Neuenswander P, Borgemeister C, Langewald J (eds) Biological control in IPM systems in Africa. CABI Publishing, London, pp 101–112

    Google Scholar 

  • Debach P (1960) The importance of taxonomy to biological control as illustrated by the cryptic history of Aphytis holoxanthus n. sp. (Hymenoptera: Aphelinidae), a parasite of Chrysomphalus aonidum, and Aphytis coheni n. sp., a parasite of Aonidiella aurantii. Ann Entomol Soc Ann 53:701–705

    Article  Google Scholar 

  • Despres L, David J-P, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22:298–307

    Article  PubMed  Google Scholar 

  • Echeverri-Molina D, Santolamazza-Carbone S (2010) Toxicity of synthetic and biological insecticides against adults of the Eucalyptus snout-beetle Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae). J Pest Sci 83:297–305

    Article  Google Scholar 

  • EPPO (2005) Gonipterus gibberus and Gonipterus scutellatus. Bull EPPO 35:368–370

    Article  Google Scholar 

  • Eschler BM, Pass DM, Willis R, Foley WJ (2000) Distribution of foliar formylated phloroglucinol derivatives amongst Eucalyptus species. Biochem Syst Ecol 28:813–824

    Article  CAS  PubMed  Google Scholar 

  • Escribano A, Williams T, Goulson D, Cave RD, Chapman JW, Caballero P (1999) Selection of a nucleopolyhedrovirus for control of Spodoptera frugiperda (Lepidoptera: Noctuidae): structural, genetic, and biological comparison of four isolates from the Americas. J Econ Entomol 92:1079–1085

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Wratten S, Sandhu H, Keller M (2015) Interspecific competition between two generalist parasitoids that attack the leafroller Epiphyas postvittana (Lepidoptera: Tortricidae). Bull Entomol Res 105:426–433

    Article  CAS  PubMed  Google Scholar 

  • Frappa C (1950) Sur l’Introduction et l’aeclimatement à Madagascar d’Anaphoidea nitens Gir., insecte auxiliaire parasite du charançon de l’eucalyptus. Bull Agric Madag 2:14–19

    Google Scholar 

  • Freitas FC, Morales-Corrêa e Castro AC, Barbosa NCCP, Fernandes OA (2017) Characterization and comparison of genetic variation in Cotesia flavipes (Hymenoptera: Braconidae) mass reared for biological pest control using microsatellite markers. Neotrop Entomol 47:433–439

    Article  CAS  PubMed  Google Scholar 

  • Galego C (2016) Two million Anaphes nitens against the Eucalyptus weevil. http://www.campogalego.com/es/forestal-es/dos-millones-de-anaphes-nitens-contra-el-gorgojo-del-eucalipto/. Accessed 5 Jan 2018

  • Garnas JR, Auger-Rozenberg M-A, Roques A, Bertelsmeier C, Wingfield MJ, Saccaggi DL, Roy HE, Slippers B (2016) Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol Invasions 18:935–952

    Article  Google Scholar 

  • Gentz MC, Murdoch G, King GF (2010) Tandem use of selective insecticides and natural enemies for effective, reduced-risk pest management. Biol Control 52:208–215

    Article  Google Scholar 

  • Gumovsky A, De Little D, Rothmann S, Lorena J, Ide Mayorga SE (2015) Re-description and first host and biology records of Entedon magnificus (Girault & Dodd) (Hymenoptera, Eulophidae), a natural enemy of Gonipterus weevils (Coleoptera, Curculionidae), a pest of Eucalyptus trees. Zootaxa 3957:577–584

    Article  PubMed  Google Scholar 

  • Gurr GM, You M (2016) Conservation biological control of pests in the molecular era: new opportunities to address old constraints. Front Plant Sci. https://doi.org/10.3389/fpls.2015.01255

    Article  PubMed  PubMed Central  Google Scholar 

  • Haines WP (2006) The Eucalyptus snout beetle, Gonipterus scutellatus (Coleoptera: Curculionidae) recently established in the Hawaiian Islands. Bishop Mus Occas Pap 88:25–26

    Google Scholar 

  • Hanks LM, Millar JG, Paine TD, Campbell CD (2000) Classical biological control of the Australian weevil Gonipterus scutellatus (Coleoptera: Curculionidae) in California. Environ Entomol 29:369–375

    Article  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in anti-herbivore defence. Perspect Plant Ecol Syst 8:157–178

    Article  Google Scholar 

  • Hawlitschek O, Porch N, Hendrich L, Balke M (2011) Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding. PLoS ONE. https://doi.org/10.1371/journal.pone.0016662

    Article  PubMed  PubMed Central  Google Scholar 

  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    Article  CAS  PubMed  Google Scholar 

  • Henery ML, Wallis IR, Stone C, Foley WJ (2008) Methyl jasmonate does not induce changes in Eucalyptus grandis leaves that alter the effect of constitutive defences on larvae of a specialist herbivore. Oecologia 156:847–859

    Article  CAS  PubMed  Google Scholar 

  • Hoelmer KA, Kirk AA (2005) Selecting arthropod biological control agents against arthropod pests: can the science be improved to decrease the risk of releasing ineffective agents? Biol Control 34:255–264. https://doi.org/10.1016/j.biocontrol.2005.05.001

    Article  Google Scholar 

  • Howarth FG (1983) Classical biocontrol: panacea or Pandora’s box. Proc Hawaii Entomol Soc 2:239–244

    Google Scholar 

  • Huber JT, Prinsloo GL (1990) Redescription of Anaphes nitens (Girault) and description of two new species of Anaphes Haliday (Hymenoptara:Mymaridae), parasites of Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae) in Tasmania. J Aust Entomol Soc 29:333–341

    Article  Google Scholar 

  • Hurley BP, Garnas J, Wingfield MJ, Branco M, Richardson DM, Slippers B (2016) Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biol Invasions 18:921–933

    Article  Google Scholar 

  • Hutchinson GE (1953) The concept of pattern in ecology. Proc Acad Natl Sci Phila 105:1–12

    Google Scholar 

  • Jeffries MJ, Lawton JH (1984) Enemy free space and the structure of ecological communities. Biol J Linn Soc Lon 23:269–286

    Article  Google Scholar 

  • Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E, Dehnen-Schmutz K, Gilioli G, Miret J, Anton J, MacLeod A, Navarro MN, Niere B, Parnell S, Potting R, Rafoss T, Rossi V, Urek G, Van Bruggen A, Van der Werf W, West J, Winter S, Santolamazza-Carbone S, Kertesz V, Aukhojee M, Gregoire J-C (2018) Pest categorisation of the Gonipterus scutellatus species complex. EFSA J. https://doi.org/10.2903/j.efsa.2018.5107

    Article  Google Scholar 

  • Kevan DK (1946) The Eucalyptus weevil in East Africa. East Afr Agric J 12:40–44

    Google Scholar 

  • Lanfranco D, Dungey HS (2001) Insect damage in Eucalyptus: a review of plantations in Chile. Aust Ecol 26:477–481

    Article  Google Scholar 

  • Liu F, Yang W, Ruan L, Sun M (2013) A Bacillus thuringiensis host strain with high melanin production for preparation of light-stable biopesticides. Ann Microbiol 63:1131–1135

    Article  CAS  Google Scholar 

  • Loch AD (2006) Phenology of Eucalyptus weevil, Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae), and chrysomelid beetles in Eucalyptus globulus plantations in south-western Australia. Agric For Entomol 8:155–165

    Article  Google Scholar 

  • Loch AD (2008) Parasitism of the Eucalyptus weevil, Gonipterus scutellatus Gyllenhal, by the egg parasitoid, Anaphes nitens Girault, in Eucalyptus globulus plantations in southwestern Australia. Biol Control 47:1–7

    Article  Google Scholar 

  • Loch AD, Floyd RB (2001) Insect pests of Tasmanian blue gum, Eucalyptus globulus globulus, in south-western Australia: history, current perspectives and future prospects. Aust Ecol 26:458–466

    Article  Google Scholar 

  • Lozier JD, Mills NJ (2009) Ecological niche models and coalescent analysis of gene flow support recent allopatric isolation of parasitoid wasp populations in the Mediterranean. PLoS ONE. https://doi.org/10.1371/journal.pone.0005901

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackauer M (1976) Genetic problems in the production of biological control agents. Annu Rev Entomol 21:369–385

    Article  Google Scholar 

  • Malausa JC (2000) Biological control of insect pests of Eucalyptus in France. In: International congress of entomology abstract book 1 forest entomology, Brazil

  • Malishev M, Sanson GD (2015) Leaf mechanics and herbivory defence: how tough tissue along the leaf body deters growing insect herbivores. Aust Ecol 40:300–308

    Article  Google Scholar 

  • Mally CW (1924) The Eucalyptus Snout-beetle (Gonipterus scutellatus, Gyll.). Dept Agric SA 9:415–442

    Google Scholar 

  • Mansilla Vazquez JP (1992) Presencia sobre Eucalyptus globulus Labill de Gonipterus scutellatus Gyll. (Col. Curculionidae) en Galicia. Bol San Veg Plagas 18:547–554

    Google Scholar 

  • Mapondera TS, Burgess T, Matsuki M, Oberprieler RG (2012) Identification and molecular phylogenetics of the cryptic species of the Gonipterus scutellatus complex (Coleoptera: Curculionidae: Gonipterini). Aust Entomol 51:175–188

    Article  Google Scholar 

  • Marelli CA (1926) The weevil outbreak on Eucalyptus trees due to D. bruchi, and experiments on disinfestation of the trees affected. In: Informaciones sobre el Jardin Zoologico de La Plata. Memoria de la Ministerio de Obras Publicas de la Provincia de Buenos Aires, Buenos Aires, pp 597–646

  • Marelli CA (1927) El gorgojo de los Eucaliptos hallado en la Argentina no es la especie originaria de Tasmania Gonipterus scutellatus Gyll.]. Rev Museo Plata 30:257–269

    Google Scholar 

  • Mayorga SEI (2013) Anaphes tasmaniae, parasitoid of Gonipterus platensis (Coleoptera: Curculionidae) introduced in Chile. ISBCA, Chile

    Google Scholar 

  • Mazza G, Inghilesi AF, Tricarico E, Montagna M, Longo S, Roversi PF (2015) First report of Gonipterus scutellatus complex (Coleoptera Curculionidae) in Sicily (Italy). Redia 98:149–150

    Google Scholar 

  • McCormick AC, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17:303–310

    Article  CAS  Google Scholar 

  • Messing RH, Klungness LM, Purcell M, Wong TTY (1993) Quality control parameters of mass-reared opiine parasitoids used in augmentative biological control of tephritid fruit flies in Hawaii. Biol Control 3:140–147

    Article  Google Scholar 

  • Miller D (1927) The gum-tree weevil and its parasites. NZ J Agric 35:283–289

    Google Scholar 

  • Mills NJ (2017) Rapid evolution of resistance to parasitism in biological control. Proc Natl Acad Sci USA 114:3792–3794

    Article  CAS  PubMed  Google Scholar 

  • Mohamed MES (2016) The interaction between the gall wasp Leptocybe invasa and Eucalyptus camaldulensis leaves: a study of phyto-volatile metabolites. J Pharmacogn Phytother 8:90–98

    Article  CAS  Google Scholar 

  • Mumm R, Tiemann T, Varama M, Hilker M (2005) Choosy egg parasitoids: specificity of oviposition-induced pine volatiles exploited by an egg parasitoid of pine sawflies. Entomol Exp Appl 115:217–225

    Article  CAS  Google Scholar 

  • Nadel R, Oscroft D, Little K (2012) Towards understanding the impact of insect pests on eucalypt productivity in Zululand, South Africa. https://www.icfr.ukzn.ac.za/publications/towards-understanding-impact-insect-pests-eucalypt-productivity-zululand-south-africahttps. https://www.icfr.ukzn.ac.za/publications/towards-understanding-impact-insect-pests-eucalypt-productivity-zululand-south-africa. Accessed 9 Nov 2018

  • Nahrung HF, Swain AJ (2015) Strangers in a strange land: do life history traits differ for alien and native colonisers of novel environments? Biol Invasions 17:699–709

    Article  Google Scholar 

  • Newete SW, Oberprieler RG, Byrne MJ (2011) The host range of the Eucalyptus Weevil, Gonipterus “scutellatus” Gyllenhal (Coleoptera: Curculionidae), in South Africa. Ann For Sci 68:1005–1013

    Article  Google Scholar 

  • O’Neal ME, Varenhorst AJ, Kaiser MC (2018) Rapid evolution to host plant resistance by an invasive herbivore: soybean aphid (Aphis glycines) virulence in North America to aphid resistant cultivars. Curr Opin Insect Sci 26:1–7

    Article  PubMed  Google Scholar 

  • Oberprieler RG, Caldara R (2012) Siraton devillei Hustache (Coleoptera: Curculionidae), the mysterious weevil from the Isle of Elba: exiled no longer. Zootaxa 3573:55–58

    Article  Google Scholar 

  • Olivier W (2009) There is honey in the forest: the history of South African forestry, 1st edn. Southern African Institute of Forestry, Pretoria

    Google Scholar 

  • Orondo SB, Day RK (1994) Cypress aphid (Cinara cupressi) damage to a cypress (Cupressus lusitanica) stand in Kenya. Int J Pest Manag 40:141–144

    Article  Google Scholar 

  • Paine TD, Steinbauer MJ, Lawson SA (2011) Native and exotic pests of Eucalyptus: a worldwide perspective. Annu Rev Entomol 56:181–201

    Article  CAS  PubMed  Google Scholar 

  • Payn KG, Dvorak WS, Myburg AA (2007) Chloroplast DNA phylogeography reveals the island colonisation route of Eucalyptus urophylla (Myrtaceae). Aust J Bot 55:673–683

    Article  CAS  Google Scholar 

  • Pérez Otero R, Mansilla Vázquez P, Rodríguez Iglesias J (2003) Eficacia y efectos en laboratorio de diferentes insecticidas en el control del defoliador del eucalipto Gonipterus scutellatus y de su parasitoide Anaphes nitens. Bol San Veg Plagas 29:649–658

    Google Scholar 

  • Perović DJ, Gámez-Virués S, Landis DA, Wäckers F, Gurr GM, Wratten SD, You MS, Desneux N (2018) Managing biological control services through multi-trophic trait interactions: review and guidelines for implementation at local and landscape scales. Biol Rev 93:306–321

    Article  PubMed  Google Scholar 

  • Pinet C (1986) Patasson nitens, parasite spécifique de Gonipterus scutellatus en France. EPPO 16:285–287

    Article  Google Scholar 

  • Rabasse J, Perrin H (1979) Introduction in France of the Eucalyptus snout beetle Gonipterus scutellatus Gyll. Ann Zool Ecol Anim 11:337–345

    Google Scholar 

  • Reis AR, Ferreira L, Tomé M, Araujo C, Branco M (2012) Efficiency of biological control of Gonipterus platensis (Coleoptera: Curculionidae) by Anaphes nitens (Hymenoptera: Mymaridae) in cold areas of the Iberian Peninsula: Implications for defoliation and wood production in Eucalyptus globulus. For Ecol Manag 270:216–222

    Article  Google Scholar 

  • Richardson KF, Meakins RH (1986) Inter- and Intra-specific variation in the susceptibility of Eucalypts to the snout beetle Gonipterus scutellatus Gyll. (Coleoptera: Curculionidae). South For 139:21–31

    Google Scholar 

  • Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the Black Salamander (Aneides flavipunctatus). Syst Biol 56:924–942

    Article  PubMed  Google Scholar 

  • Rodas C (2018) Important insect pest and diseases affecting plantation forestry in Colombia. In: Embrapa Florestas-Resumo em anais de congresso (ALICE), 21–23 March 2018. In: IUFRO working party meeting, 2018, Punta del Este. Improving forest health on commercial plantations: book of abstracts

  • Rosado-Neto G (1993) Gonipterinae of Eucalyptus: first record of Gonipterus scutellatus for the state of São Paulo, Brazil, and some considerations on G. gibberus (Coleoptera: Curculionidae). Rev Bras Entomol 37:465–467

    Google Scholar 

  • Rosado-Neto G, Marques MI (1996) Características do adulto, genitália e formas imaturas de Gonipterus gibberus Boisduvale G. scutellatus Gyllenhal (Coleoptera, Curculionidae). Rev Bras Zool 13:77–90

    Article  Google Scholar 

  • Rosen D (1986) The role of taxonomy in effective biological control programs. Agric Ecosyst Environ 15:121–129

    Article  CAS  Google Scholar 

  • SAG (2005) Informativo fitosanitario forestal no. 1. http://www.sag.cl/sites/default/files/informativo_1.pdf. Accessed 5 Jan 2018

  • SAG (2014) Informativo fitosanitario forestal no. 9. http://www.sag.cl/sites/default/files/informativo_9.pdf. Accessed 5 Jan 2018

  • Santolamazza-Carbone S, Cordero Rivera A (2003) Egg load and adaptive superparasitism in Anaphes nitens, an egg parasitoid of the Eucalyptus snout-beetle Gonipterus scutellatus. Entomol Exp Appl 106:127–134

    Article  Google Scholar 

  • Santolamazza-Carbone S, de Ana-Magan FJF (2004) Testing of selected insecticides to assess the viability of the integrated pest management of the Eucalyptus snout-beetle Gonipterus scutellatus in north-west Spain. J Appl Entomol 128:620–627

    Article  CAS  Google Scholar 

  • Santolamazza-Carbone S, Rodriguez-Illamola A, Cordero Rivera A (2006) Thermal requirements and phenology of the Eucalyptus snout beetle Gonipterus scutellatus Gyllenhal. J Appl Entomol 130:368–376

    Article  Google Scholar 

  • Santolamazza-Carbone S, Pestaña Nieto M, Pérez Otero R, Mansilla Vázquez P, Cordero Rivera A (2008) Winter and spring ecology of Anaphes nitens, a solitary egg-parasitoid of the Eucalyptus snout-beetle Gonipterus scutellatus. BioControl 54:195–209

    Article  Google Scholar 

  • Schaffner U (2001) Host range testing of insects for biological weed control: how can it be better interpreted? Bioscience 51:951–959

    Article  Google Scholar 

  • Simon J-C, Peccoud J (2018) Rapid evolution of aphid pests in agricultural environments. Curr Opin Insect Sci 26:17–24

    Article  PubMed  Google Scholar 

  • Singer MC (2000) Reducing ambiguity in describing plant-insect interactions: “preference”, “acceptability” and “electivity”. Ecol Lett 3:159–162

    Article  Google Scholar 

  • Stenberg JA, Heil M, Åhman I, Björkman C (2015) Optimizing crops for biocontrol of pests and disease. Trends Plant Sci 20:698–712. https://doi.org/10.1016/j.tplants.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  • Stiling P (1993) Why do natural enemies fail in classical biological control programs? Am Entomol 39:31–37

    Article  Google Scholar 

  • Sun D, Guo Z, Liu Y, Zhang Y (2017) Progress and prospects of CRISPR/Cas systems in insects and other arthropods. Front Physiol 8:1–22. https://doi.org/10.3389/fphys.2017.00608

    Article  Google Scholar 

  • Thomas MB (1999) Ecological approaches and the development of “truly integrated” pest management. Proc Natl Acad Sci USA 96:5944–5951

    Article  CAS  PubMed  Google Scholar 

  • Thomas MB, Blanford S (2003) Thermal biology in insect–parasite interactions. Trends Ecol Evol 18:344–350

    Article  Google Scholar 

  • Thomas M, Waage J (1996) Integration of biological control and host plant resistance breeding: a scientific and literature review. CTA, Wageningen

    Google Scholar 

  • Tillman PG, Mulrooney JE (2000) Effect of selected insecticides on the natural enemies Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae), Geocoris punctipes (Hemiptera: Lygaeidae), and Bracon mellitor, Cardiochiles nigriceps, and Cotesia marginiventris (Hymenoptera: Braconidae) in cotton. J Econ Entomol 93:1638–1643

    Article  CAS  PubMed  Google Scholar 

  • Tomasetto F, Tylianakis JM, Reale M, Wratten S, Goldson SL (2017) Intensified agriculture favors evolved resistance to biological control. Proc Natl Acad Sci USA 114:3885–3890

    Article  CAS  PubMed  Google Scholar 

  • Tooke FGC (1955) The Eucalyptus Snout Beetle: a study of its ecology and control by biological means. Dept Agric SA:1–282

    Google Scholar 

  • Tribe GD (2005) The present status of Anaphes nitens (Hymenoptera: Mymaridae), an egg parasitoid of the Eucalyptus snout beetle Gonipterus scutellatus, in the Western Cape Province of South Africa. South For 203:49–54

    Google Scholar 

  • Turnbull AL, Chant DA (1961) The practice and theory of biological control of insects in Canada. Can J Zool 39:697–753

    Article  CAS  Google Scholar 

  • Valente C, Vaz A, Pina J, Manta A (2004), Sequeira a control strategy against the eucalyptus snout beetle, Gonipterus scutellatus Gyllenhal (Coleoptera, Curculionidae), by the portuguese cellulose industry. In: NMG B (ed) Eucalyptus in a changing world. Procedings of IUFRO conference, Aveiro, pp 622–627

  • Valente C, Gonçalves C, Afonso C, Reis A, Branco M (2017a) Controlo biológico clássico do gorgulho-do-eucalipto: situação atual e perspetivas futuras. https://www.isa.ulisboa.pt/files/cef/pub/meetings/2017-07/2_CValente.pdf. Accessed 1 Sept 2018

  • Valente C, Gonçalves CI, Reis A, Branco M (2017b) Pre-selection and biological potential of the egg parasitoid Anaphes inexpectatus for the control of the Eucalyptus snout beetle, Gonipterus platensis. J Pest Sci 90:911–923

    Article  Google Scholar 

  • van Alphen JJM, Visser ME (1990) Superparasitism as an adaptive strategy for insect parasitoids. Annu Rev Entomol 35:59–79

    Article  PubMed  Google Scholar 

  • van Lenteren J (2000) Success in biological control of arthropods by augmentation of natural enemies. In: Gurr G, Wratten S (eds) Biological control: measures of success. Springer, Amsterdam, pp 77–103

    Chapter  Google Scholar 

  • van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57:1–20

    Article  Google Scholar 

  • Verleur M (2012) Monitoring of block plantings in coastal Zululand to establlsh if Gonipterus scutellatus has clonal preferences. Sappi technical report 16/2011

  • Wharton TN, Kriticos DJ (2004) The fundamental and realized niche of the Monterey Pine aphid, Essigella californica (Essig) (Hemiptera: Aphididae): implications for managing softwood plantations in Australia. Divers Distrib 10:253–262

    Article  Google Scholar 

  • Wilcken CF, de Oliveira NC, Sartório RC, Loureiro EB, Bezerra Junior N, Rosado-Neto GH (2008) Ocorrência de Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae) em plantações de eucalipto no Estado do Espírirto Santo. Arq Inst Biol 75:113–115

    Google Scholar 

  • Williams MEDC (2001) Biological control of thrips on ornamental crops: interactions between the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on cyclamen. Biocontrol Sci Technol 11:41–55

    Article  Google Scholar 

  • Williams JR, Moutia LA, Hermelin PR (1951) The Biological Control of Gonipterus scutellatus Gyll. (Col. Curculionidae) in Mauritius. Bull Entomol Res 42:23–28

    Article  Google Scholar 

  • Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest health: the need for a global strategy. Science 349:832–836

    Article  CAS  Google Scholar 

  • Withers TM (2001) Colonization of eucalypts in New Zealand by Australian insects. Aust Ecol 26:467–476

    Article  Google Scholar 

  • Zepeda-Paulo F, Dion E, Lavandero B, Maheo F, Outreman Y, Simon JC, Figueroa CC (2016) Signatures of genetic bottleneck and differentiation after the introduction of an exotic parasitoid for classical biological control. Biol Invasions 18:565–581

    Article  Google Scholar 

Download references

Acknowledgements

We thank the University of Pretoria (UP), Members of the Tree Protection Co-operative Programme (TPCP) and the Department of Science and Technology—Sector-Specific Innovation Fund (DST-SIF) for financial support.

Funding

This study was funded by Tree Protection Co-operative Programme (TPCP) and the Department of Science and Technology—Sector-Specific Innovation Fund (DST-SIF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Schröder.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain experiments with human participants or animals performed by any of the authors.

Additional information

Communicated by N. Desneux.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schröder, M.L., Slippers, B., Wingfield, M.J. et al. Invasion history and management of Eucalyptus snout beetles in the Gonipterus scutellatus species complex. J Pest Sci 93, 11–25 (2020). https://doi.org/10.1007/s10340-019-01156-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-019-01156-y

Keywords

Navigation