Skip to main content

Advertisement

Log in

Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences

  • Insect Invasions
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The advent of simple and affordable tools for molecular identification of novel insect invaders and assessment of population diversity has changed the face of invasion biology in recent years. The widespread application of these tools has brought with it an emerging understanding that patterns in biogeography, introduction history and subsequent movement and spread of many invasive alien insects are far more complex than previously thought. We reviewed the literature and found that for a number of invasive insects, there is strong and growing evidence that multiple introductions, complex global movement, and population admixture in the invaded range are commonplace. Additionally, historical paradigms related to species and strain identities and origins of common invaders are in many cases being challenged. This has major consequences for our understanding of basic biology and ecology of invasive insects and impacts quarantine, management and biocontrol programs. In addition, we found that founder effects rarely limit fitness in invasive insects and may benefit populations (by purging harmful alleles or increasing additive genetic variance). Also, while phenotypic plasticity appears important post-establishment, genetic diversity in invasive insects is often higher than expected and increases over time via multiple introductions. Further, connectivity among disjunct regions of global invasive ranges is generally far higher than expected and is often asymmetric, with some populations contributing disproportionately to global spread. We argue that the role of connectivity in driving the ecology and evolution of introduced species with multiple invasive ranges has been historically underestimated and that such species are often best understood in a global context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arca M, Mougel F, Guillemaud T, Dupas S, Rome Q, Perrard A, Muller F, Fossoud A, Capdevielle-Dulac C, Torres-Leguizamon M, Chen XX, Tan JL, Jung C, Villemant C, Arnold G, Silvain JF (2015) Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, in Europe. Biol Invasions. doi:10.1007/s10530-015-0880-9

    Google Scholar 

  • Armstrong KF, Ball SL (2005) DNA barcodes for biosecurity: invasive species identification. Proc R Soc Lond [Biol] 360:1813–1823

    CAS  Google Scholar 

  • Auger-Rozenberg MA, Roques A (2012) Seed wasp invasions promoted by unregulated seed trade affect vegetal and animal biodiversity. Integr Zool 7:228–246

    Article  PubMed  Google Scholar 

  • Aukema JE, Mccullough DG, Von Holle B, Liebhold A, Britton K, Frankel SJ (2010) Historical accumulation of nonindigenous forest pests in the continental United States. Bioscience 60:886–897

    Article  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York, pp 147–168

    Google Scholar 

  • Balanyà J, Huey RB, Gilchrist GW, Serra L (2009) The chromosomal polymorphism of Drosophila subobscura: a microevolutionary weapon to monitor global change. Heredity 103:364–367

    Article  PubMed  Google Scholar 

  • Barrett S (2015) Foundations of invasion genetics: the Baker and Stebbins legacy. Mol Ecol 24:1927–1941

    Article  PubMed  Google Scholar 

  • Bergeron M-J, Leal I, Foord B, Ross G, Davis C, Slippers B, de Groot P, Hamelin RC (2011) Putative origin of clonal lineages of Amylostereum areolatum, the fungal symbiont associated with Sirex noctilio, retrieved from Pinus sylvestris, in eastern Canada. Fungal Biol 115:750–758

    Article  PubMed  Google Scholar 

  • Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, Yu DW, de Bruyn M (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367

    Article  PubMed  Google Scholar 

  • Boissin E, Hurley B, Wingfield MJ, Vasaitis R, Stenlid J, Davis C, De Groot P, Ahumada R, Carnegie A, Goldarazena A, Klasmer P, Wermelinger B, Slippers B (2012) Retracing the routes of introduction of invasive species: the case of the Sirex noctilio woodwasp. Mol Ecol 21:5728–5744

    Article  CAS  PubMed  Google Scholar 

  • Bolnick DI, Svanback R, Araujo MS, Persson L (2007) Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc Natl Acad Sci USA 104:10075–10079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11

    Article  PubMed  Google Scholar 

  • Boubou A, Migeon A, Roderick GK, Auger P, Cornuet J-M, Magalhaes S, Navajas M (2012) Test of colonisation scenarios reveals complex invasion history of the Red Tomato Spider Mite Tetranychus evansi. PLoS ONE 7:e35601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HC (2013) The consequence of tree pests and diseases for ecosystem services. Science 342:1235773

    Article  CAS  PubMed  Google Scholar 

  • Bryant EH, Meffert LM (1993) The effect of serial founder-flush cycles on quantitative genetic variation in the housefly. Heredity 70:122–129

    Article  Google Scholar 

  • Carew M, Schiffer M, Umina P, Weeks A, Hoffmann A (2009) Molecular markers indicate that the wheat curl mite, Aceria tosichella Keifer, may represent a species complex in Australia. Bull Entomol Res 99:479–486

    Article  CAS  PubMed  Google Scholar 

  • Caron V, Ede FJ, Sunnucks P (2014) Unravelling the paradox of loss of genetic variation during invasion: superclones may explain the success of a clonal invader. PLoS ONE 9:e97744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castrillo LA, Hajek AE, Pajares JA, Thomsen IM, Csóka G, Kenaley SC, Kepler RM, Zamora P, Angeli S (2015) Multilocus genotyping of Amylostereum spp. associated with Sirex noctilio and other woodwasps from Europe reveal clonal lineage introduced to the US. Fungal Biol. doi:10.1016/j.funbio.2015.03.004

    Google Scholar 

  • Chapple DG, Miller KA, Kraus F, Thompson MB (2013) Divergent introduction histories among invasive populations of the delicate skink (Lampropholis delicata): has the importance of genetic admixture in the success of biological invasions been overemphasized? Divers Distrib 19:134–146

    Article  Google Scholar 

  • Charlesworth J, Eyre-Walker A (2007) The other side of the nearly neutral theory, evidence of slightly advantageous back-mutations. Proc Natl Acad Sci USA 104:16992–16997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA (2014) Biological invasions, climate change and genomics. Evol Appl 8:23–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciosi M, Miller NJ, Kim KS, Giordano R, Estoup A, Guillemaud T (2008) Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Mol Ecol 17:3614–3627

    Article  CAS  PubMed  Google Scholar 

  • Cornuet J-M, Santos F, Beaumont MA, Robert CP, Marin J-M, Balding DJ, Guillemaud T, Estoup A (2008) Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson R (1962) Development of the spotted alfalfa aphid population in North America. Internationaler Kongress für Entomologie, Vienna 1960, pp 26–28

  • Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92

    Article  CAS  PubMed  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  CAS  PubMed  Google Scholar 

  • Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD (2015) The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol 24:2095–2111

    Article  PubMed  Google Scholar 

  • Dybdahl M, Kane S (2005) Adaptation vs. phenotypic plasticity in the success of a clonal invader. Ecol 86:1592–1601

    Article  Google Scholar 

  • Elton C (1958) The ecology of invasions by animals and plants. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Eschen R, Britton K, Brockerhoff E, Burgess T, Dalley V, Epanchin-Niell RS, Gupta K, Hardy G, Huang Y, Kenis M, Kimani E, Li HM, Olsen S, Ormrod R, Otieno W, Sadof C, Tadeu E, Theyse M (2015) International variation in phytosanitary legislation and regulations governing importation of plants for planting. Environ Sci Pol 51:228–237

    Article  Google Scholar 

  • Essl F, Bacher S, Blackburn TM, Booy O, Brundu G, Brunel S, Cardoso A-C, Eschen R, Gallardo B, Galil B, García-Berthou E, Genovesi P, Groom Q, Harrower C, Hulme PE, Katsanevakis S, Kenis M, Kühn I, Kumschick S, Martinou AF, Nentwig W, O’Flynn C, Pagad S, Pergl J, Pyšek P, Rabitsch W, Richardson DM, Roques A, Roy HE, Scalera R, Schindler S, Seebens H, Vanderhoeven S, Vilà M, Wilson JRU, Zenetos A, Jeschke JM (2015) Crossing frontiers in tackling pathways of biological invasions. Bioscience 65:769–782

    Article  Google Scholar 

  • Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    Article  PubMed  Google Scholar 

  • Facon B, Hufbauer RA, Tayeh A, Loiseau A, Lombaert E, Vitalis R, Guillemaud T, Lundgren JG, Estoup A (2011) Inbreeding depression is purged in the invasive insect Harmonia axyridis. Curr Biol 21:424–427

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  • Follett PA, Neven LG (2006) Current trends in quarantine entomology. Annu Rev Entomol 51:359–385

    Article  CAS  PubMed  Google Scholar 

  • Garnas JR, Drummond FA, Groden E (2007) Intercolony aggression within and among local populations of the invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in coastal Maine. Environ Entomol 36:105–113

    Article  PubMed  Google Scholar 

  • Garnas JR, Hurley BP, Slippers B, Wingfield MJ (2012) Biological control of forest plantation pests in an interconnected world requires greater international focus. Int J Pest Manag 58:211–223

    Article  Google Scholar 

  • Gilabert A, Simon J-C, Dedryver C-A, Plantegenest M (2014) Do ecological niches differ between sexual and asexual lineages of an aphid species? Evol Ecol 28:1095–1104

    Article  Google Scholar 

  • Gladieux P, Feurtey A, Hood ME, Snirc A, Clavel J, Dutech C, Roy M, Giraud T (2015) The population biology of fungal invasions. Mol Ecol 24:1969–1986

    Article  CAS  PubMed  Google Scholar 

  • Gleman S (2003) How are deleterious mutations purged? Drift versus random mating. Evolution 57:2678–2687

    Article  Google Scholar 

  • Goodnight CJ (1988) Epistasis and the effect of founder events on the additive genetic variance. Evolution 42:441–454

    Article  Google Scholar 

  • Haack RA, Britton KO, Brockerhoff EG, Cavey JF, Garrett LJ, Kimberley M, Lowenstein F, Nuding A, Olson LJ, Turner J, Vasilaky KN (2014) Effectiveness of the International Phytosanitary Standard ISPM No. 15 on reducing wood borer infestation rates in wood packaging material entering the United States. PLoS ONE 9:e96611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hajek AE, Nielsen C, Kepler RM, Long SJ, Castrillo L (2013) Fidelity among Sirex woodwasps and their fungal symbionts. Microb Ecol 65:753–762

    Article  PubMed  PubMed Central  Google Scholar 

  • Haran J, Koutroumpa F, Magnoux E, Roques A, Roux G (2015) Ghost mtDNA haplotypes generated by fortuitous NUMTs can deeply disturb infra-specific genetic diversity and phylogeographic pattern. J Zool Syst Evol Res 53:109–115

    Article  Google Scholar 

  • Heger T, Jeschke JM (2014) The enemy release hypothesis as a hierarchy of hypotheses. Oikos 123:741–750

    Article  Google Scholar 

  • Hellenthal G, Busby GB, Band G, Wilson JF, Capelli C, Falush D, Myers S (2014) A genetic atlas of human admixture history. Science 343:747–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Reynolds KT, Nash MA, Weeks AR (2008) A high incidence of parthenogenesis in agricultural pests. Proc R Soc Lond [Biol] 275:2473–2481

    Article  Google Scholar 

  • Huey RB, Gilchrist GW, Carlson ML, Berrigan D, Serra L (2000) Rapid evolution of a geographic cline in size in an introduced fly. Science 287:308–309

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL (2012) Evolution of adaptive phenotypic traits without positive Darwinian selection. Heredity 108:347–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  PubMed  Google Scholar 

  • Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. Proc R Soc Lond [Biol] 278:2866–2873

    Article  Google Scholar 

  • Hurley BP, Garnas J, Wingfield MJ, Branco M, Richardson DM, Slippers B (2016) Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biol Invasions. doi:10.1007/s10530-016-1081-x

  • Jarvis JP, Cropp SN, Vaughn TT, Pletscher LS, King-Ellison K, Adams-Hunt E, Erickson C, Cheverud JM (2011) The effect of a population bottleneck on the evolution of genetic variance/covariance structure. J Evol Biol 24:2139–2152

    Article  CAS  PubMed  Google Scholar 

  • Jerde JL, Mahon AR, Chadderton WL, Lodge DM (2011) “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv Lett 4:150–157

    Article  Google Scholar 

  • Jones EI, Gomulkiewicz R (2012) Biotic interactions, rapid evolution, and the establishment of introduced species. Am Nat 179:E28–E36

    Article  PubMed  Google Scholar 

  • Keller SR, Taylor DR (2010) Genomic admixture increases fitness during a biological invasion. J Evol Biol 23:1720–1731

    Article  CAS  PubMed  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Keller SR, Fields PD, Berardi AE, Taylor DR (2014) Recent admixture generates heterozygosity-fitness correlations during the range expansion of an invading species. J Evol Biol 27:616–627

    Article  CAS  PubMed  Google Scholar 

  • Kerdelhué C, Boivin T, Burban C (2014) Contrasted invasion processes imprint the genetic structure of an invasive scale insect across southern Europe. Heredity 113:390–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerdelhué C, Battisti A, Burban C, Branco M, Cassel-Lundhagen A, İpekdal K, Larsson S, Lopez-Vaamonde C, Magnoux E, Mateus E, Mendel Z, Negrisolo E, Paiva M-R, Pivotto ID, Rocha S, Ronnås C, Roques A, Rossi J-P, Rousselet J, Salvato P, Santos H, Simonato M, Zane L (2015) Genetic diversity and structure at different spatial scales in the processionary moths. In: Roques A (ed) Processionary moths and climate change: an update. Springer, Dordrecht, pp 163–226

    Google Scholar 

  • Kolbe JJ, Glor RE, Schettino L, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181

    Article  CAS  PubMed  Google Scholar 

  • Kolbe JJ, Larson A, Losos JB (2007) Differential admixture shapes morphological variation among invasive populations of the lizard Anolis sagrei. Mol Ecol 16:1579–1591

    Article  CAS  PubMed  Google Scholar 

  • Krehenwinkel H, Tautz D (2013) Northern range expansion of European populations of the wasp spider Argiope bruennichi is associated with global warming-correlated genetic admixture and population-specific temperature adaptations. Mol Ecol 22:2232–2248

    Article  CAS  PubMed  Google Scholar 

  • Lanfear R, Kokko H, Eyre-Walker A (2014) Population size and the rate of evolution. Trends Ecol Evol 29:33–41

    Article  PubMed  Google Scholar 

  • Lawson Handley LJ (2015) How will the ‘molecular revolution’ contribute to biological recording? Biol J Linn Soc 115:750–766

    Article  Google Scholar 

  • Lawson Handley LJ, Estoup A, Evans DM, Thomas CE, Lombaert E, Facon B, Aebi A, Roy HE (2011) Ecological genetics of invasive alien species. Biocontrol 56:409–428

    Article  Google Scholar 

  • Le Roux J, Wieczorek A (2009) Molecular systematics and population genetics of biological invasions: towards a better understanding of invasive species management. Ann Appl Biol 154:1–17

    Article  CAS  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Lee C, Gelembiuk G (2008) Evolutionary origins of invasive populations. Evol Appl 1:427–448

    Article  PubMed  PubMed Central  Google Scholar 

  • Liebhold AM, Macdonald W, Bergdahl D, Mastro VC (1995) Invasion by exotic forest pests: a threat to forest ecosystems. For Sci 41:1–49

    Google Scholar 

  • Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO (2012) Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Frontiers Ecol Environ 10:135–143

    Article  Google Scholar 

  • Lombaert E, Guillemaud T, Cornuet J-M, Malausa T, Facon B, Estoup A (2010) Bridgehead effect in the worldwide invasion of the biocontrol Harlequin ladybird. PLoS ONE 5:e9743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loxdale H, Lushai G (2003) Rapid changes in clonal lines: the death of a ‘sacred cow’. Biol J Linn Soc 79:3–16

    Article  Google Scholar 

  • Lushai G, Loxdale HD, Allen JA (2003) The dynamic clonal genome and its adaptive potential. Biol J Linn Soc 79:193–208

    Article  Google Scholar 

  • Maddison DR, Guralnick R, Hill A, Reysenbach AL, McDade LA (2012) Ramping up biodiversity discovery via online quantum contributions. Trends Ecol Evol 27:72–77

    Article  PubMed  Google Scholar 

  • Malacrida AR, Gomulski LM, Bonizzoni M, Bertin S, Gasperi G, Gugliclmino CR (2007) Globalization and fruitfly invasion and expansion: the medfly paradigm. Genetica 131:1–9

    Article  CAS  PubMed  Google Scholar 

  • Mapondera TS, Burgess T, Matsuki M, Oberprieler RG (2012) Identification and molecular phylogenetics of the cryptic species of the Gonipterus scutellatus complex (Coleoptera: Curculionidae: Gonipterini). Aust J Entomol 51:175–188

    Article  Google Scholar 

  • Margaritopoulos JT, Kasprowicz L, Malloch GL, Fenton B (2009) Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid. BMC Ecol 9:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

    Google Scholar 

  • Mendel Z, Protasov A, Fisher N, La Salle J (2004) Taxonomy and biology of Leptocybe invasa gen. & sp. n. (Hymenoptera: Eulophidae), an invasive gall inducer on Eucalyptus. Austral J Entomol 43:101–113

    Article  Google Scholar 

  • Miura O (2007) Molecular genetic approaches to elucidate the ecological and evolutionary issues associated with biological invasions. Ecol Res 22:876–883

    Article  CAS  Google Scholar 

  • Moran N (2007) Symbiosis as an adaptive process and source of phenotypic complexity. PNAS 104:8627–8633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mumford JD (2002) Economic issues related to quarantine in international trade. Eur Rev Agric Econ 29:329–348

    Article  Google Scholar 

  • Nadel R, Slippers B, Scholes M, Lawson S, Noack A, Wilcken C, Bouvet J, Wingfield MJ (2009) DNA bar-coding reveals source and patterns of Thaumastocoris peregrinus invasions in South Africa and South America. Biol Invasions 12:1067–1077

    Article  Google Scholar 

  • Nelson DR (2002) Current status of the Tardigrada: evolution and ecology. Integr Comp Biol 42:652–659

    Article  PubMed  Google Scholar 

  • Nugnes F, Gebiola M, Monti MM, Gualtieri L, Giorgini M, Wang J, Bernardo U (2015) Genetic diversity of the invasive gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its Rickettsia endosymbiont, and associated sex-ratio differences. PLoS ONE 10:e0124660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olatinwo R, Allison J, Meeker J, Johnson W, Streett D, Aime MC, Carlton C (2013) Detection and identification of Amylostereum areolatum (Russulales: Amylostereaceae) in the mycangia of Sirex nigricornis (Hymenoptera: Siricidae) in Central Louisiana. Environ Entomol 42:1246–1256

    Article  CAS  PubMed  Google Scholar 

  • Paine TD, Jocelyn GM, Daane KM (2010) Accumulation of pest insects on Eucalyptus in California: random process or smoking gun? J Econom Entomol 103:1943–1949

    Article  Google Scholar 

  • Pamilo P (1988) Genetic variation in heterogeneous environments. Ann Zool Fenn 25:99–106

    Google Scholar 

  • Parker I, Simberloff D, Lonsdale W, Goodell K, Wonham M, Kareiva P, Williamson M, von Holle B, Moyle P, Byers J (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19

    Article  Google Scholar 

  • Pascual M, Chapuis MP, Mestres F, Balanya J, Huey RB, Gilchrist GW, Serra L, Estoup A (2007) Introduction history of Drosophila subobscura in the new world: a microsatellite-based survey using ABC methods. Mol Ecol 16:3069–3083

    Article  CAS  PubMed  Google Scholar 

  • Peccoud J, Figueroa CC, Silva AX, Ramirez CC, Mieuzet L, Bonhomme J, Stoeckel S, Plantegenest M, Simon JC (2008) Host range expansion of an introduced insect pest through multiple colonizations of specialized clones. Mol Ecol 17:4608–4618

    Article  CAS  PubMed  Google Scholar 

  • Pedersen JS, Krieger MJB, Vogel V, Giraud T, Keller L (2006) Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution 60:782–791

    Article  PubMed  Google Scholar 

  • Perring TM (2001) The Bemisia tabaci species complex. Crop Protect 20:725–737

    Article  Google Scholar 

  • Petit R, Aguinagalde I, de Beaulieu J, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck G, Demesure-Musch B, Palme A, Martin J, Rendell S, Vendramin G (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  CAS  PubMed  Google Scholar 

  • Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pyšek P, Richardson D (2010) Invasive species, environmental change and management and health. Annu Rev Environ Resour 35:25–55

    Article  Google Scholar 

  • Rius M, Darling JA (2014) How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol 29:233–242

    Article  PubMed  Google Scholar 

  • Robert CP, Cornuet JM, Marin JM, Pillai NS (2011) Lack of confidence in approximate Bayesian computation model choice. Proc Natl Acad Sci USA 108:15112–15117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson A (1952) The effect of inbreeding on the variation due to recessive genes. Genetics 37:188–207

    Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Roques A, Auger-Rozenberg MA, Blackburn TM, Garnas JR, Pyšek P, Rabitsch W, Richardson DM, Wingfield MJ, Liebhold AM, Duncan RP (2016) Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol Invasions. doi:10.1007/s10530-016-1080-y

  • Roy HE, Lawson Handley LJ (2012) Networking: a community approach to invaders and their parasites. Funct Ecol 26:1238–1248

    Article  Google Scholar 

  • Roy BA, Alexander HM, Davidson J, Campbell FT, Burdon JJ, Sniezko R, Brasier C (2014) Increasing forest loss worldwide from invasive pests requires new trade regulations. Front Ecol Environ 12:457–465

    Article  Google Scholar 

  • Roy HE, Brown PMJ, Adriaens T, Berkvens N, Borges I, Clusella-Trullas S, De Clercq P, Comont RF, Eschen R, Estoup A, Evans EW, Facon B, Gardiner MM, Gil A, Grez AA, Guillemaud T, Haelewaters D, Herz A, Honek A, Howe AG, Hui C, Hutchison WD, Kenis M, Koch RL, Kulfan J, Lawson Handley L, Lombaert E, Loomans A, Losey J, Lukashuk AO, Maes D, Magro A, Murray KM, San Martin G, Martinkova Z, Minnaar IA, Nedved O, Orlova-Bienkowskaja MJ, Rabitsch W,  Ravn HP, Rondoni G, Rorke SL, Ryndevich SK, Saethre MG, Sloggett JJ, Soares AO, Stals R, Tinsley MC, Vandereycken A, van Wielink P, Viglášová S, Zach P, Zakharov IA, Zaviezo T, Zhao Z (2016) The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology. Biol Invasions. doi: 10.1007/s10530-016-1077-6

  • Saccaggi DL, Karsten M, Robertson MP, Kumschick S, Somers MJ, Wilson JRU, Terblanche JS (2016) Methods and approaches for management of arthropod border incursions. Biol Invasions. doi:10.1007/s10530-016-1085-6

  • Saccheri IJ, Nichols RA, Brakefield PM (2006) Morphological differentiation following experimental bottlenecks in the butterfly Bicyclus anynana (Nymphalidae). Biol J Linn Soc 89:107–115

    Article  Google Scholar 

  • Sakai A, Allendorf F, Holt J, Lodge D, Molofsky J, Baughman S, Cabin R, Cohen J, Ellstrand N, McCauley D (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santana Q, Coetzee M, Steenkamp E, Mlonyeni O, Hammond G, Wingfield M, Wingfield B (2009) Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechniques 46:217–223

    Article  CAS  PubMed  Google Scholar 

  • Santini A, Ghelardini L, De Pace C, Desprez-Loustau M-L, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T, Hantula J, Holdenrieder O, Jankovsky L, Jung T, Jurc D, Kirisits T, Kunca A, Lygis V, Malecka M, Marcais B, Schmitz S, Schumacher J, Solheim H, Solla A, Szabò I, Tsopelas P, Vannini A, Vettraino AM, Webber J, Woodward S, Stenlid J (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250

    Article  CAS  PubMed  Google Scholar 

  • Scaduto DA, Garner SR, Leach EL, Thompson AGJ (2012) Genetic evidence for multiple invasions of the Eastern Subterranean Termite into Canada. Environ Entomol 1:1680–1686

    Article  Google Scholar 

  • Shadmany M, Omar D, Muhamad R (2015) Biotype and insecticide resistance status of Bemisia tabaci populations from Peninsular Malaysia. J Appl Entomol 139:67–75

    Article  CAS  Google Scholar 

  • Skoracka A, Kuczyński L, Szydło W, Rector B (2013) The wheat curl mite Aceria tosichella (Acari: Eriophyidae) is a complex of cryptic lineages with divergent host ranges: evidence from molecular and plant bioassay data. Biol J Linn Soc 109:165–180

    Article  Google Scholar 

  • Skoracka A, Rector B, Kuczyński L, Szydło W, Hein G, French R (2014) Global spread of wheat curl mite by its most polyphagous and pestiferous lineages. Ann Appl Biol 165:222–235

    Article  Google Scholar 

  • Slippers B, Wingfield MJ, Coutinho TA, Wingfield BD (2001) Population structure and possible origin of Amylostereum areolatum in South Africa. Plant Pathol 50:206–210

    Article  Google Scholar 

  • Slippers B, Hurley BP, Wingfield MJ (2015) Sirex Woodwasp: a model for evolving management paradigms of invasive forest pests. Annu Rev Entomol 60:601–619

    Article  CAS  PubMed  Google Scholar 

  • Song H, Buhay JE, Whiting MF, Crandall KA (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci USA 105:3486–13491

    Google Scholar 

  • Spellerberg IF, Sawyer JWD (1999) Ecological patterns and types of species distribution. In: Spellerberg IF, Sawyer JWD (eds) An introduction to applied biogeography. Cambridge University Press, Cambridge, pp 108–133

    Google Scholar 

  • Starks P (2003) Selection for uniformity: xenophobia and invasion success. Trends Ecol Evol 18:159–162

    Article  Google Scholar 

  • Steiner WW (1977) Niche width and genetic variation in Hawaiian Drosophila. Am Nat 111:1037–1045

    Article  Google Scholar 

  • Taerum SJ, Duong TA, de Beer ZW, Gillette N, Sun J-H, Owen DR, Wingfield MJ (2013) Large shift in symbiont assemblage in the invasive Red Turpentine Beetle. PLoS ONE 8:e78126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Murata K, Matsuura A (2015) Rapid evolution of an introduced insect Ophraella communa LeSage in new environments: temporal changes and geographical differences in photoperiodic response. Entomol Sci 18:104–112

    Article  Google Scholar 

  • Tsutsui N, Suarez A, Grosberg R (2003) Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc Natl Acad Sci USA 100:1078–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turgeon J, Tayeh A, Facon B, Lombaert E, De Clercq P, Berkvens N, Lundgren JG, Estoup A (2011) Experimental evidence for the phenotypic impact of admixture between wild and biocontrol Asian ladybird (Harmonia axyridis) involved in the European invasion. J Evol Biol 24:1044–1052

    Article  CAS  PubMed  Google Scholar 

  • van Heerwaarden B, Willi Y, Kristensen TN, Hoffmann AA (2008) Population bottlenecks increase additive genetic variance but do not break a selection limit in rain forest Drosophila. Genetics 179:2135–2146

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Valen L (1965) Morphological variation and width of ecological niche. Am Nat 99:377–390

    Article  Google Scholar 

  • Verhoeven KJF, Macel M, Wolfe LM, Biere A (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc R Soc Lond [Biol] 278:2–8

    Article  Google Scholar 

  • Vernot B, Akey JM (2014) Resurrecting surviving Neandertal lineages from modern human genomes. Science 343:1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Villablanca FX, Roderick GK, Palumbi SR (1998) Invasion genetics of the Mediterranean fruit fly: variation in multiple nuclear introns. Mol Ecol 7:547–560

    Article  CAS  PubMed  Google Scholar 

  • Vorburger C (2006) Temporal dynamics of genotypic diversity reveal strong clonal selection in the aphid Myzus persicae. J Evol Biol 19:97–107

    Article  CAS  PubMed  Google Scholar 

  • Wares J, Hughes A, Grosberg R (2005) Mechanisms that drive evolutionary change: insights from species introductions and invasions. In: Sax D, Stachowitz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution, and biogeography. Sinauer Associates, Sunderland, pp 229–257

    Google Scholar 

  • Wenger JA, Michel AP (2013) Implementing an evolutionary framework for understanding genetic relationships of phenotypically defined insect biotypes in the invasive soybean aphid (Aphis glycines). Evol Appl 6:1041–1053

    PubMed  PubMed Central  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    Article  CAS  PubMed  Google Scholar 

  • Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers Distrib 14:569–580

    Article  Google Scholar 

  • Willis JH, Orr HA (1993) Increased heritable variation following population bottlenecks: the role of dominance. Evolution 47:949–957

    Article  Google Scholar 

  • Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144

    Article  PubMed  Google Scholar 

  • Wingfield MJ, Garnas JR, Hajek A, Hurley BP, de Beer ZW, Taerum SJ (2016) Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biol Invasions. doi:10.1007/s10530-016-1084-7

  • Wooding AL, Wingfield MJ, Hurley BP, Garnas JR, de Groot P, Slippers B (2013) Lack of fidelity revealed in an insect-fungal mutualism after invasion. Biol Lett 9:1–4

    Article  Google Scholar 

  • Zenni RD, Bailey JK, Simberloff D (2014) Rapid evolution and range expansion of an invasive plant are driven by provenance–environment interactions. Ecol Lett 17:727–735

    Article  PubMed  Google Scholar 

  • Zepeda-Paulo FA, Simon JC, Ramirez CC, Fuentes-Contreras E, Margaritopoulos JT, Wilson ACC, Sorenson CE, Briones LM, Azevedo R, Ohashi DV, Lacroix C, Glais L, Figueroa CC (2010) The invasion route for an insect pest species: the tobacco aphid in the New World. Mol Ecol 19:4738–4752

    Article  CAS  PubMed  Google Scholar 

  • Zielke DE, Werner D, Schaffner F, Kampen H, Fonseca DM (2014) Unexpected patterns of admixture in German populations of Aedes japonicus japonicus (Diptera: Culicidae) underscore the importance of human intervention. PLoS ONE 9:e99093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The Tree Protection Cooperative Programme (TPCP), the National Research Foundation (NRF) and the Department of Trade and Industry (DTI) of South Africa are acknowledged for their financial support. This paper had its origin at a workshop on “Drivers, impacts, mechanisms and adaptation in insect invasions” hosted by the DST-NRF Centre of Excellence for Invasion Biology in Stellenbosch, South Africa, in November 2014. Additional financial support was provided by HortGro, the National Research Foundation of South Africa, Stellenbosch University, and SubTrop.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff R. Garnas.

Additional information

Guest editors: Matthew P. Hill, Susana Clusella-Trullas, John S. Terblanche & David M. Richardson / Insect Invasions

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R. Garnas, J., Auger-Rozenberg, MA., Roques, A. et al. Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol Invasions 18, 935–952 (2016). https://doi.org/10.1007/s10530-016-1082-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1082-9

Keywords

Navigation