Skip to main content

Advertisement

Log in

Sclerotium rolfsii lectin expressed in tobacco confers protection against Spodoptera litura and Myzus persicae

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Bacillus thuringiensis (Bt) toxins expressed in GM crops provide effective protection against chewing-type insects but fail to control damage by sucking pests, leading to a search for a newer class of efficient entomotoxic proteins. In this direction lectins with novel sugar-binding properties showing toxicity to a wide range of agricultural insect pests are being evaluated for the insecticidal efficacy. Our previous study demonstrated the potential toxic effect of O-glycans sugar-specific Sclerotium rolfsii lectin (SRL) supplemented through an artificial diet on the growth and survival of Spodoptera litura larvae by binding to midgut epithelial cells. Considering the significance of its entomotoxic property, we cloned the SRL gene and expressed it in a prokaryotic host, which showed 97 % sequence homology to the native SRL. Recombinant SRL (recSRL) exhibited a carbohydrate-binding property and insecticidal activity similar to native SRL. The SRL gene was transferred into tobacco plants by Agrobacterium-mediated transformation and expressed constitutively using a CaMV35S promoter. Integration and stability of the SRL gene was confirmed by Southern hybridization. recSRL expressed in the transgenic tobacco leaves was analyzed by Western blotting and quantified by ELISA, which accounted for 0.47 % of the total soluble leaf proteins. Bioassays conducted on second instar S. litura larvae fed on transgenic tobacco leaves showed 90 % larval mortality in 48 h and in planta assays using M. persicae demonstrated an 81.90 % population reduction. These findings indicated that the ectopically expressed SRL conferred protection against target pests of lepidopteran and hemipteran orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23:57–62

    Article  CAS  PubMed  Google Scholar 

  • Bhat SR, Srinivasan S (2002) Molecular and genetic analyses of transgenic plants: considerations and approaches. Plant Sci 163:673–681

    Article  CAS  Google Scholar 

  • Birck C, Damian L, Marty-Detraves C, Lougarre A, Schulze-Briese C, Koehl P, Fournier D, Paquereau L, Jean-Pierre Samama (2004) A new lectin family with structure similarity to actinoporins revealed by the crystal structure of Xerocomus chysenteron lectin XCL. J Mol Biol 344:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carlini CR, Grossi-de-Sa MF (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40:1515–1539

    Article  CAS  PubMed  Google Scholar 

  • Chachadi VB, Inamdar SR, Yu LG, Rhodes JM, Swamy BM (2011) Exquisite binding specificity of Sclerotium rolfsii lectin toward TF-related O-linked mucin-type glycans. Glycoconj J 28:49–56

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Sarkar A, Mondal HA, Das S (2009) Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Res 18:529–544

    Article  CAS  PubMed  Google Scholar 

  • Coelho MB, Marangoni S, Macedo MLR (2007) Insecticidal action of Annona coriacea lectin against the flour moth Anagasta kuehniella and the rice moth Corcyra cephalonica (Lepidoptera:Pyralidae). Comp Biochem Physiol C: Toxicol Pharmacol 146:406–414

    Google Scholar 

  • Couty A, Poppy GM (2001) Does host-feeding on GNA-intoxicated aphids by Aphelinus abdominalis affects their longevity and/or fecundity. Entomol Exp Appl 100(3):331–337

    Article  Google Scholar 

  • Czapla TH, Lang BA (1990) Effect of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and Southern corn rootworm (Coleoptera: Chrysomelidae). J of Economic Entomology 83(6):2480–2485

    Article  Google Scholar 

  • Dutta I, Saha P, Majumder P, Sarkar A, Chakraborti D, Banerjee S, Das S (2005) The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol J 3:601–611

    Article  CAS  PubMed  Google Scholar 

  • Eligar SM, Pujari R, Swamy BM, Shastry P, Inamdar SR (2012) Sclerotium rolfsii lectin inhibits proliferation and induces apoptosis in human ovarian cancer cell line PA-1. Cell Prolif 45:397–403

    Article  CAS  PubMed  Google Scholar 

  • Gatehouse JA, Gatehouse AMR, Fitches E (1997) Effects of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on the development of tomato moth (Lacanobia oleracea) larvae in laboratory and glasshouse trials. J Insect Physiol 43(8):727–739

    Article  PubMed  Google Scholar 

  • Guo HN, Jia YT, Zhou YG, Zhang ZS, Ou YQ, Jiang Y, Tian YC (2004) Effects of transgenic tobacco plants expressing ACA gene from Amaranthus caudatus on the population development of Myzus persicae. Acta Botanica Sinica-English Edition 46(9):1100–1105

    CAS  Google Scholar 

  • Hamshou M, Van Damme EJ, Smagghe G (2010a) Entomotoxic effects of fungal lectin from Rhizoctonia solani towards Spodoptera littoralis. Fungal Biol 114:34–40

    Article  CAS  PubMed  Google Scholar 

  • Hamshou M, Smagghe G, Shahidi-Noghabi S, De Geyter E, Lannoo N, Van Damme EJ (2010b) Insecticidal properties of Sclerotinia sclerotiorum agglutinin and its interaction with insect tissues and cells. Insect Biochem Mol Biol 40:883–890

    Article  CAS  PubMed  Google Scholar 

  • Hamshou M, Van Damme EJ, Caccia S, Cappelle K, Vandenborre G, Ghesquiere B, Gevaert K, Smagghe G (2013) High entomotoxicity and mechanism of the fungal GalNAc/Gal-specific Rhizoctonia solani lectin in pest insects. J Insect Physiol 59(3):295–305

    Article  CAS  PubMed  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y, Hamilton WDO, Merryweather A, Newell C, Timans JC, Peumans WJ, Van Damme EJM, Boulter D (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res 4(1):18–25

    Article  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227(4691):1229–1231

    Article  CAS  Google Scholar 

  • Inamdar SR, Savanur MA, Eligar SM, Chachadi VB, Nagre NN, Chen C, Barclays M, Ingle A, Mahajan P, Borges A, Shastry P, Kalraiya RD, Swamy BM, Rhodes JM, Yu LG (2012) The TF-antigen binding lectin from Sclerotium rolfsii inhibits growth of human colon cancer cells by inducing apoptosis in vitro and suppresses tumor growth in vivo. Glycobiology 22:1227–1235

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Zhang X, Daniell H (2012) Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol J 10:313–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Leonidas DD, Swamy BM, Hatzopoulos GN, Gonchigar SJ, Chachadi VB, Inamdar SR, Zographos SE, Oikonomakos NG (2007) Structural basis for the carbohydrate recognition of the Sclerotium rolfsii lectin. J Mol Biol 368:1145–1161

    Article  CAS  PubMed  Google Scholar 

  • Lopez M, Tetaert D, Juliant S, Gazon M, Cerutti M, Verbert A, Delannoy P (1999) O-glycosylation potential of lepidopteran insect cell lines. Biochim Biophys Acta 1427:49–61

    Article  CAS  PubMed  Google Scholar 

  • Lu ZZ, Zalucki MP, Perkins LE, Wang DY, Wu LL (2013) Towards a resistance management strategy for Helicoverpa armigera in Bt-cotton in northwestern China: an assessment of potential refuge crops. J Pest Science 86(4):695–703

    Article  Google Scholar 

  • Malaquias JB, Omoto C, Ramalho FS, Wesley WAC, Silveira RF (2015) Bt cotton and the predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) in the management of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) resistance to lambda-cyhalothrin. J Pest Sci 88(1):57–63

    Article  Google Scholar 

  • McCafferty HRK, Moore PH, Zhu YJ (2008) Papaya transformed with the Galanthus nivalis GNA gene produces a biologically active lectin with spider mite control activity. Plant Sci 175(3):385–393

    Article  CAS  Google Scholar 

  • Michiels K, Van Damme EJM, Smagghe G (2010) Plant-insect interactions: what can we learn from plant lectins? Arch Insect Biochem Physiol 73:193–212

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagadhara D, Ramesh S, Pasalu IC, Rao YK, Sarma NP, Reddy VD, Rao KV (2004) Transgenic rice plants expressing the snowdrop lectin gene (gna) exhibit high-level resistance to the whitebacked planthopper (Sogatella furcifera). Theor Appl Genet 109:1399–1405

    Article  CAS  PubMed  Google Scholar 

  • Porcar M, Grenier AM, Federici B, Rahbe Y (2009) Effects of Bacillus thuringiensis δ-Endotoxins on the Pea Aphid (Acyrthosiphon pisum). Appl Environ Microbiol 75:4897–4900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasenjit S, Pralay M, Indrajit D, Tui R, Roy SC, Das S (2006) Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta 223(6):1329–1343

    Article  Google Scholar 

  • Ranjekar PK, Patankar A, Gupta V, Bhatnagar R, Bentur J, Kumar PA (2003) Genetic engineering of crop plants for insect resistance. Current Sci 84(3):321–329

    Google Scholar 

  • Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Chistou P, Bharathi M, Bown DP, Powell KS, Spence J, Gatehouse AMR, Gatehouse JA (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown plant hopper. Plant J 15(4):469–477

    Article  CAS  PubMed  Google Scholar 

  • Rudiger H, Gabius HJ (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18:589–613

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi A, Smagghe G, Broeders S, Hernalsteens JP, Greve HD, Peumans WJ, Van Damme EJM (2008) Ectopically expressed leaf and bulb lectins from garlic (Allium sativum L.) Protect transgenic tobacco plants against cotton leaf worm (Spodoptera littoralis). Transgenic Res 17:9–18

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sathisha GJ, Prakash YK, Chachadi VB, Nagaraja NN, Inamdar SR, Leonidas DD, Savithri HS, Swamy BM (2008) X-ray sequence ambiguities of Sclerotium rolfsii lectin resolved by mass spectrometry. Amino Acids 35:309–320

    Article  CAS  PubMed  Google Scholar 

  • Savanur MA, Eligar SM, Pujari R, Chen C, Mahajan P et al (2014) Sclerotium rolfsii Lectin Induces Stronger Inhibition of Proliferation in Human Breast Cancer Cells than Normal Human Mammary Epithelial Cells by Induction of Cell Apoptosis. PLoS ONE 9(11):e110107

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma HC, Sharma KK, Crouch JH (2004) Genetic transformation of crops for insect resistance: potential and limitations. Critical Reviews in Plant Sci 23(1):47–72

    Article  CAS  Google Scholar 

  • Stoger E, William S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5(1):65–73

    Article  CAS  Google Scholar 

  • Swamy BM, Bhat AG, Hegde GV, Naik RS, Kulkarni S, Inamdar SR (2004) Immunolocalization and functional role of Sclerotium rolfsii lectin in development of fungus by interaction with its endogenous receptor. Glycobiology 14(11):951–957

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y (2008) Reply to Field-evolved resistance to Bt toxins. Nat Biotechnol 26(1328):1074–1076

    CAS  Google Scholar 

  • Tabashnik BE, Brevault T, Carriere Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521

    Article  CAS  PubMed  Google Scholar 

  • Tian E, Ten Hagen KG (2007) O-linked glycan expression during Drosophila development. Glycobiology 17:820–827

    Article  CAS  PubMed  Google Scholar 

  • Trigueros V, Lougarre A, Ali-Ahmed A, Rahbé Y, Guillot J, Chavant L, Fournier D, Paquereau L (2003) Xerocomus chrysenteron lectin: identification of a new pesticidal protein. Biochim Biophys Acta 1621(3):292–298

    Article  CAS  PubMed  Google Scholar 

  • Vishwanathreddy H, Bhat GG, Inamdar SR, Gudihal RK, Swamy BM (2014) Sclerotium rolfsii lectin exerts insecticidal activity on Spodoptera litura larvae by binding to membrane proteins of midgut epithelial cells and triggering caspase-3-dependent apoptosis. Toxicon 78:47–57

    Article  CAS  Google Scholar 

  • Vandenborre G, Smagghe G, Van Damme EJM (2011a) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72:1538–1550

    Article  CAS  PubMed  Google Scholar 

  • Vandenborre G, Smagghe G, Ghesquiere B, Menschaert G, Nagender RR, Gevaert K, Van Damme EJM (2011b) Diversity in protein glycosylation among insect species. PLoS ONE 6(2):e16682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayan S, Singh NK, Shukla P, Kirti PB (2013) Defensin (TvD1) from Tephrosia villosa exhibited strong antiinsect and anti-fungal activities in transgenic tobacco plants. J Pest Science 86(2):337–344

    Article  Google Scholar 

  • Wang W, Hause B, Peumans WJ, Smagghe G, Mackie A, Fraser R, Van Damme EJM (2003) The Tn antigen-specific lectin from ground ivy is an insecticidal protein with an unusual physiology. Plant Physiol 132:1322–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhang K, Sun X, Tang K, Zhang J (2005) Enhancement of resistance to aphids by introducing the snowdrop lectin gene gna into maize plants. J Biosci 30:627–638

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Luo X, Guo X, Xiao J, Tian Y (2006) Transgenic cotton, expressing Amaranthus caudatus agglutinin confers enhanced resistance to aphids. Plant Breed 125(4):390–394

    Article  CAS  Google Scholar 

  • Yu LG (2007) The oncofetal Thomsen-Friedenreich carbohydrate antigen in cancer progression. Glycoconj J 24(8):411–420

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Council of Scientific and Industrial Research (CSIR), New Delhi, and the support from the CPEPA program of the University Grants Commission and Department of Biotechnology (DBT) under the IPLS program. The authors thank Prof. M.A. Vijayalakshmi, Director, Centre for Bioseparation Technology (CBST), VIT, Vellore, for the facilities provided to raise the SRL antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bale M. Swamy.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Human and Animal Rights and Informed Consent

This study did not involve any human samples/ volunteers or animals. Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by M. Traugott.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanti, G.L., Vishwanathreddy, H., Venkat, H. et al. Sclerotium rolfsii lectin expressed in tobacco confers protection against Spodoptera litura and Myzus persicae . J Pest Sci 89, 591–602 (2016). https://doi.org/10.1007/s10340-015-0704-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-015-0704-9

Keywords

Navigation