Skip to main content

Advertisement

Log in

No effects of transcranial direct current stimulation on visual evoked potential and peak gamma frequency

  • Research Article
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Evidence suggests that the visual evoked potential (VEP) and gamma oscillations elicited by visual stimuli reflect the balance of excitatory and inhibitory (E-I) cortical processes. As tDCS has been shown to modulate E–I balance, the current study investigated whether amplitudes of VEP components (N1 and P2) and peak gamma frequency are modulated by transcranial direct current stimulation (tDCS). Healthy adults underwent two electroencephalography (EEG) recordings while viewing stimuli designed to elicit a robust visual response. Between the two recordings, participants were randomly assigned to three tDCS conditions (anodal-, cathodal-, and sham-tDCS) or received no-tDCS. tDCS electrodes were placed over the occipital cortex (Oz) and the left cheek with an intensity of 2 mA for 10 min. Data of 39 participants were analysed for VEP amplitudes and peak gamma frequency using mixed-model ANOVAs. The results showed no main effects of tDCS in any metric. Possible explanations for the absence of tDCS effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Accornero N, Voti PL, La Riccia M, Gregori B (2007) Visual evoked potentials modulation during direct current cortical polarization. Exp Brain Res 178(2):261–266

    Article  PubMed  Google Scholar 

  • Aloisi P, Marrelli A, Porto C, Tozzi E, Cerone G (1997) Visual evoked potentials and serum magnesium levels in juvenile migraine patients. Headache: J Head Face Pain 37(6):383–385

    Article  CAS  Google Scholar 

  • Andrade G, Butler J, Peters G, Molholm S, Foxe JJ (2016) Atypical visual and somatosensory adaptation in schizophrenia-spectrum disorders. Translation Psychiat 6(5):e804

    Article  CAS  Google Scholar 

  • Antal A, Paulus W (2008) Transcranial direct current stimulation and visual perception. Perception 37(3):367–374

    Article  PubMed  Google Scholar 

  • Antal A, Nitsche MA, Paulus W (2001) External modulation of visual perception in humans. NeuroReport 12(16):3553–3555

    Article  CAS  PubMed  Google Scholar 

  • Antal A, Kincses TZ, Nitsche MA, Paulus W (2003a) Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Exp Brain Res 150(3):375–378

    Article  PubMed  Google Scholar 

  • Antal A, Kincses TZ, Nitsche MA, Paulus W (2003b) Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia 41(13):1802–1807

    Article  PubMed  Google Scholar 

  • Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus WJIO (2004) Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Investigat Ophthalmol Visual Sci 45(2):702–707

    Article  Google Scholar 

  • Antal A, Nitsche MA, Paulus W (2006) Transcranial direct current stimulation and the visual cortex. Brain Res Bull 68(6):459–463

    Article  PubMed  Google Scholar 

  • Arbabshirani MR, Havlicek M, Kiehl KA, Pearlson GD, Calhoun VD (2013) Functional network connectivity during rest and task conditions: a comparative study. Hum Brain Mapp 34(11):2959–2971

    Article  PubMed  Google Scholar 

  • Aslaksen PM, Vasylenko O, Fagerlund AJ (2014) The effect of transcranial direct current stimulation on experimentally induced heat pain. Exp Brain Res 232(6):1865–1873

    Article  PubMed  Google Scholar 

  • Aytemür A, Almeida N, Lee K-H (2017) Differential sensory cortical involvement in auditory and visual sensorimotor temporal recalibration: evidence from transcranial direct current stimulation (tDCS). Neuropsychologia 96:122–128

    Article  PubMed  Google Scholar 

  • Bach M, Ullrich D (1997) Contrast dependency of motion-onset and pattern-reversal VEPs: interaction of stimulus type, recording site and response component. Vision Res 37(13):1845–1849

    Article  CAS  PubMed  Google Scholar 

  • Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Maffei L, Sale A (2011) Brain plasticity and disease: a matter of inhibition. Neural Plast 2011:1–11

    Article  Google Scholar 

  • Berryhill ME, Wencil EB, Coslett HB, Olson IR (2010) A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe. Neurosci Lett 479(3):312–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertone A, Mottron L, Jelenic P, Faubert J (2005) Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain 128(10):2430–2441

    Article  PubMed  Google Scholar 

  • Bin Dawood A, Dickinson A, Aytemur A, Howarth C, Milne E, Jones M (2020) Investigating the effects of tDCS on visual orientation discrimination task performance: “the possible influence of placebo.” J Cognit Enhance 4(3):235–249. https://doi.org/10.1007/s41465-019-00154-3

    Article  CAS  Google Scholar 

  • Blacker KJ, Peltier C, McKinley RA, Biggs AT (2020) What versus how in visual search: effects of object recognition training, strategy training, and non-invasive brain stimulation on satellite image search. J Cognit Enhance 4(2):131–144

    Article  Google Scholar 

  • Bolognini N, Rossetti A, Casati C, Mancini F, Vallar G (2011) Neuromodulation of multisensory perception: a tDCS study of the sound-induced flash illusion. Neuropsychologia 49(2):231–237

    Article  PubMed  Google Scholar 

  • Börgers C, Kopell N (2003) Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput 15(3):509–538

    Article  PubMed  Google Scholar 

  • Brainard DH, Vision S (1997) The psychophysics toolbox. Spat vis 10:433–436

    Article  CAS  PubMed  Google Scholar 

  • Brückner S, Kammer T (2016) No modulation of visual cortex excitability by transcranial direct current stimulation. PLoS ONE 11(12):e0167697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brunel N, Wang X-J (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90(1):415–430

    Article  PubMed  Google Scholar 

  • Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F (2011) A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol 14(8):1133–1145

    Article  PubMed  Google Scholar 

  • Busch NA, Debener S, Kranczioch C, Engel AK, Herrmann CS (2004) Size matters: effects of stimulus size, duration and eccentricity on the visual gamma-band response. Clin Neurophysiol 115(8):1810–1820

    Article  PubMed  Google Scholar 

  • Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14(5):365–376

    Article  CAS  PubMed  Google Scholar 

  • Campbell AE, Sumner P, Singh KD, Muthukumaraswamy SD (2014) Acute effects of alcohol on stimulus-induced gamma oscillations in human primary visual and motor cortices. Neuropsychopharmacology 39(9):2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ (2012) GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev 36(9):2044–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen MX (2014) Analyzing neural time series data: theory and practice. MIT press, Cambridge

    Book  Google Scholar 

  • Cousijn H, Haegens S, Wallis G, Near J, Stokes MG, Harrison PJ, Nobre AC (2014) Resting GABA and glutamate concentrations do not predict visual gamma frequency or amplitude. Proc Natl Acad Sci 111(25):9301–9306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels J, Pettigrew J (1975) A study of inhibitory antagonism in cat visual cortex. Brain Res 93(1):41–62

    Article  CAS  PubMed  Google Scholar 

  • Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005

    Article  Google Scholar 

  • Dickinson A, Bruyns-Haylett M, Jones M, Milne E (2015) Increased peak gamma frequency in individuals with higher levels of autistic traits. Eur J Neurosci 41(8):1095–1101

    Article  PubMed  Google Scholar 

  • Dickinson A, Bruyns-Haylett M, Smith R, Jones M, Milne E (2016a) Superior orientation discrimination and increased peak gamma frequency in autism spectrum conditions. J Abnorm Psychol 125(3):412

    Article  PubMed  Google Scholar 

  • Dickinson A, Jones M, Milne E (2016b) Measuring neural excitation and inhibition in autism: different approaches, different findings and different interpretations. Brain Res 1648:277–289

    Article  CAS  PubMed  Google Scholar 

  • Diederich NJ, Goetz CG (2008) The placebo treatments in neurosciences: new insights from clinical and neuroimaging studies. Neurology 71(9):677–684

    Article  PubMed  Google Scholar 

  • Ding Z, Li J, Spiegel DP, Chen Z, Chan L, Luo G, Yuan J, Deng D, Yu M, Thompson B (2016) The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia. Sci Rep 6:19280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinn W, Göral F, Adigüzel S, Karamürsel S, Fregni F, Aycicegi-Dinn A (2017) Effectiveness of tDCS blinding protocol in a sham-controlled study. Brain Stimulat: Basic, Translat, Clini Res Neuromodul 10(2):401

    Article  Google Scholar 

  • Donahue MJ, Near J, Blicher JU, Jezzard P (2010) Baseline GABA concentration and fMRI response. Neuroimage 53(2):392–398

    Article  CAS  PubMed  Google Scholar 

  • Edden RA, Muthukumaraswamy SD, Freeman TC, Singh KD (2009) Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J Neurosci 29(50):15721–15726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edden RA, Crocetti D, Zhu H, Gilbert DL, Mostofsky SH (2012) Reduced GABA concentration in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 69(7):750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egorova N, Yu R, Kaur N, Vangel M, Gollub RL, Dougherty DD, Kong J, Camprodon JA (2015) Neuromodulation of conditioned placebo/nocebo in heat pain: anodal vs cathodal transcranial direct current stimulation to the right dorsolateral prefrontal cortex. Pain 156(7):1342

    Article  PubMed  PubMed Central  Google Scholar 

  • Fesi JD, Mendola JD (2015) Individual peak gamma frequency predicts switch rate in perceptual rivalry. Hum Brain Mapp 36(2):566–576

    Article  PubMed  Google Scholar 

  • Freyberg J, Robertson C, Baron-Cohen SJJ (2015) Atypical binocular rivalry dynamics of simple and complex stimuli in autism. J Vision 15(12):643–643

    Article  Google Scholar 

  • Friehs MA, Brauner L, Frings C (2021) Dual-tDCS over the right prefrontal cortex does not modulate stop-signal task performance. Exp Brain Res 239(3):811–820

    Article  PubMed  Google Scholar 

  • Galea JM, Jayaram G, Ajagbe L, Celnik P (2009) Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 29(28):9115–9122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galli G, Vadillo MA, Sirota M, Feurra M, Medvedeva A (2019) A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) on episodic memory. Brain Stimul 12(2):231–241

    Article  PubMed  Google Scholar 

  • Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 117(4):845–850

    Article  PubMed  Google Scholar 

  • Gawel M, Connolly J, Rose FC (1983) Migraine patients exhibit abnormalities in the visual evoked potential. Headache: J Head Face Pain 23(2):49–52

    Article  CAS  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5/6):561–566

    Article  Google Scholar 

  • Hanley CJ, Singh KD, McGonigle DJ (2016) Transcranial modulation of brain oscillatory responses: a concurrent tDCS–MEG investigation. Neuroimage 140:20–32

    Article  PubMed  Google Scholar 

  • Hanslmayr S, Klimesch W, Sauseng P, Gruber W, Doppelmayr M, Freunberger R, Pecherstorfer T (2005) Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. Neurosci Lett 375(1):64–68

    Article  CAS  PubMed  Google Scholar 

  • Harris DJ, Wilson MR, Buckingham G, Vine SJ (2019) No effect of transcranial direct current stimulation of frontal, motor or visual cortex on performance of a self-paced visuomotor skill. Psychol Sport Exerc 43:368–373

    Article  Google Scholar 

  • Hazarika N, Chen JZ, Tsoi AC, Sergejew A (1997) Classification of EEG signals using the wavelet transform. Signal Process 59(1):61–72

    Article  Google Scholar 

  • Horvath JC, Forte JD, Carter O (2015a) Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia 66:213–236

    Article  PubMed  Google Scholar 

  • Horvath JC, Forte JD, Carter O (2015b) Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul 8(3):535–550

    Article  PubMed  Google Scholar 

  • Hoy KE, Bailey NW, Arnold SL, Fitzgerald PB (2015) The effect of transcranial direct current stimulation on gamma activity and working memory in schizophrenia. Psychiatry Res 228(2):191–196

    Article  PubMed  Google Scholar 

  • Hsu T-Y, Tseng L-Y, Yu J-X, Kuo W-J, Hung DL, Tzeng OJ, Walsh V, Muggleton NG, Juan C-H (2011) Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. Neuroimage 56(4):2249–2257

    Article  PubMed  Google Scholar 

  • Hudnell H, Boyes W (1991) The comparability of rat and human visual-evoked potentials. Neurosci Biobehav Rev 15(1):159–164

    Article  CAS  PubMed  Google Scholar 

  • Im C-H, Park J-H, Shim M, Chang WH, Kim Y-H (2012) Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling. Phy Med Bio 57(8):2137

    Article  Google Scholar 

  • Jacobson L, Koslowsky M, Lavidor M (2012) tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res 216(1):1–10

    Article  PubMed  Google Scholar 

  • Jasper HH (1958) The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol 10:370–375

    Google Scholar 

  • Jonker ZD, Gaiser C, Tulen JH, Ribbers GM, Frens MA, Selles RW (2021) No effect of anodal tDCS on motor cortical excitability and no evidence for responders in a large double-blind placebo-controlled trial. Brain Stimul 14(1):100–109

    Article  PubMed  Google Scholar 

  • Jung T-P, Makeig S, Humphries C, Lee T-W, Mckeown MJ, Iragui V, Sejnowski TJ (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37(2):163–178

    Article  CAS  PubMed  Google Scholar 

  • Jung Y-J, Kim J-H, Im C-H (2013) COMETS: A MATLAB toolbox for simulating local electric fields generated by transcranial direct current stimulation (tDCS). Biomed Eng Lett 3(1):39–46

    Article  Google Scholar 

  • Kaiser G (1994) A friendly guide to wavelets, Birkhauser, Boston. In: MA

  • Kennard C, Gawel M, Rudolph MN, Rose FC (1978) Visual evoked potentials in migraine subjects. Res Clin Stud Headache 6:73–80

    CAS  PubMed  Google Scholar 

  • Kessler SK, Turkeltaub PE, Benson JG, Hamilton RH (2012) Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimul 5(2):155–162

    Article  PubMed  Google Scholar 

  • Kissler J, Herbert C, Winkler I, Junghofer M (2009) Emotion and attention in visual word processing—An ERP study. Biol Psychol 80(1):75–83

    Article  PubMed  Google Scholar 

  • Klaus J, Hartwigsen G (2020) Failure to improve verbal fluency with transcranial direct current stimulation. Neuroscience 449:123–133

    Article  CAS  PubMed  Google Scholar 

  • Klem GH, LuÈders HO, Jasper H, Elger C (1999) The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol 52(3):3–6

    CAS  Google Scholar 

  • Korth M, Nguyen NX (1997) The effect of stimulus size on human cortical potentials evoked by chromatic patterns. Vision Res 37(5):649–657

    Article  CAS  PubMed  Google Scholar 

  • Kraft A, Roehmel J, Olma MC, Schmidt S, Irlbacher K, Brandt SA (2010) Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Exp Brain Res 207(3–4):283–290

    Article  PubMed  Google Scholar 

  • Krause B, Márquez-Ruiz J, Cohen Kadosh R (2013) The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci 7:602

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraut MA, Arezzo JC, Vaughan HG Jr (1990) Inhibitory processes in the flash evoked potential of the monkey. Electroencephalogr Clin Neurophysiol 76(5):440–452

    Article  CAS  PubMed  Google Scholar 

  • Kujala J, Jung J, Bouvard S, Lecaignard F, Lothe A, Bouet R, Ciumas C, Ryvlin P, Jerbi K (2015) Gamma oscillations in V1 are correlated with GABA A receptor density: a multi-modal MEG and Flumazenil-PET study. Sci Rep 5:16347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo H-I, Bikson M, Datta A, Minhas P, Paulus W, Kuo M-F, Nitsche MA (2013) Comparing cortical plasticity induced by conventional and high-definition 4× 1 ring tDCS: a neurophysiological study. Brain Stimul 6(4):644–648

    Article  PubMed  Google Scholar 

  • Kurcyus K, Annac E, Hanning NM, Harris AD, Oeltzschner G, Edden R, Riedl V (2018) Opposite dynamics of GABA and glutamate levels in the occipital cortex during visual processing. J Neurosci 38(46):9967–9976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Jones SR (2013) Distinguishing mechanisms of gamma frequency oscillations in human current source signals using a computational model of a laminar neocortical network. Front Hum Neurosci 7:869

    Article  PubMed  PubMed Central  Google Scholar 

  • Li LM, Uehara K, Hanakawa T (2015) The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci 9:181

    Article  PubMed  PubMed Central  Google Scholar 

  • Loo CK, Husain MM, McDonald WM, Aaronson S, O’Reardon JP, Alonzo A, Weickert CS, Martin DM, McClintock SM, Mohan A (2018) International randomized-controlled trial of transcranial Direct Current Stimulation in depression. Brain Stimul 11(1):125–133

    Article  PubMed  Google Scholar 

  • Luck SJ (2014) An introduction to the event-related potential technique. MIT press, Cambridge

    Google Scholar 

  • Magazzini L, Muthukumaraswamy SD, Campbell AE, Hamandi K, Lingfordonzo A, Weickert CS, Mart DJ, Sumner P, Wilson SJ, Singh KD (2016) Significant reductions in human visual gamma frequency by the gaba reuptake inhibitor tiagabine revealed by robust peak frequency estimation. Hum Brain Mapp 37(11):3882–3896

    Article  PubMed  PubMed Central  Google Scholar 

  • Makeig S, Jung T-P, Bell AJ, Ghahremani D, Sejnowski TJ (1997) Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci 94(20):10979–10984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall TR, Esterer S, Herring JD, Bergmann TO, Jensen O (2016) On the relationship between cortical excitability and visual oscillatory responses—A concurrent tDCS–MEG study. Neuroimage 140:41–49

    Article  PubMed  Google Scholar 

  • Medina J, Cason S (2017) No evidential value in samples of transcranial direct current stimulation (tDCS) studies of cognition and working memory in healthy populations. Cortex 94:131–141

    Article  PubMed  Google Scholar 

  • Milne E, Dunn S, Zhao C, Jones M (2018) Altered neural dynamics in people who report spontaneous out of body experiences Cortex

  • Milne E, Gomez R, Giannadou A, Jones M (2019) Atypical EEG in autism spectrum disorder: comparing a dimensional and a categorical approach. J Abnormal Psychol 128(5):442–452

    Article  Google Scholar 

  • Minarik T, Berger B, Althaus L, Bader V, Biebl B, Brotzeller F, Fusban T, Hegemann J, Jesteadt L, Kalweit L (2016) The importance of sample size for reproducibility of tDCS effects. Front Hum Neurosci 10:453

    Article  PubMed  PubMed Central  Google Scholar 

  • Moon S-K, Lim K (2009) Patten visual evoked potential (P-VEP) in adult monocular amblyopia. Invest Ophthalmol vis Sci 50(13):4708–4708

    Google Scholar 

  • Moskowitz A, Sokol S (1985) Effect of stimulus orientation on the latency and amplitude of the VEP. Invest Ophthalmol vis Sci 26(2):246–248

    CAS  PubMed  Google Scholar 

  • Müller K, Lohmann G, Neumann J, Grigutsch M, Mildner T, von Cramon DY (2004) Investigating the wavelet coherence phase of the BOLD signal. J Magnetic Resonan Imag: an Offi J Int Soci Magnet Resonan Med 20(1):145–152

    Article  Google Scholar 

  • Muthukumaraswamy SD, Edden RA, Jones DK, Swettenham JB, Singh KD (2009) Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci 106(20):8356–8361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthukumaraswamy SD, Singh KD, Swettenham JB, Jones DK (2010) Visual gamma oscillations and evoked responses: variability, repeatability and structural MRI correlates. Neuroimage 49(4):3349–3357

    Article  PubMed  Google Scholar 

  • Muthukumaraswamy SD, Myers JF, Wilson SJ, Nutt DJ, Hamandi K, Lingford-Hughes A, Singh KD (2013) Elevating endogenous GABA levels with GAT-1 blockade modulates evoked but not induced responses in human visual cortex. Neuropsychopharmacology 38(6):1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasseri P, Nitsche MA, Ekhtiari H (2015) A framework for categorizing electrode montages in transcranial direct current stimulation. Front Hum Neurosci 9:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen BN, McKendrick AM, Vingrys AJ (2016) Abnormal inhibition-excitation imbalance in migraine. Cephalalgia 36(1):5–14

    Article  PubMed  Google Scholar 

  • Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57(10):1899–1901

    Article  CAS  PubMed  Google Scholar 

  • Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W (2003a) Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. Supple Clini Neurophysiol 56:255–276

    Article  Google Scholar 

  • Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W (2003b) Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 114(4):600–604

    Article  PubMed  Google Scholar 

  • Nitsche MA, Liebetanz D, Schlitterlau A, Henschke U, Fricke K, Frommann K, Lang N, Henning S, Paulus W, Tergau F (2004) GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur J Neurosci 19(10):2720–2726

    Article  PubMed  Google Scholar 

  • Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimulation: Basic, Translat Clinical Research in Neuromodulation 1(3):206–223

    Article  Google Scholar 

  • Palm U, Reisinger E, Keeser D, Kuo M-F, Pogarell O, Leicht G, Mulert C, Nitsche MA, Padberg F (2013) Evaluation of sham transcranial direct current stimulation for randomized, placebo-controlled clinical trials. Brain Stimul 6(4):690–695

    Article  PubMed  Google Scholar 

  • Pantev C (1995) Evoked and induced gamma-band activity of the human cortex. Brain Topogr 7(4):321–330

    Article  CAS  PubMed  Google Scholar 

  • Purpura DP (1959) Nature of electrocortical potentials and synaptic organizations in cerebral and cerebellar cortex. Int Rev Neurobiol 1:47–163

    Article  CAS  PubMed  Google Scholar 

  • Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton DF, Colombo J, Coppola G, Geyer MA, Glanzman DL, Marsland S (2009) Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem 92(2):135–138

    Article  PubMed  Google Scholar 

  • Reinhart RM, Xiao W, McClenahan LJ, Woodman GF (2016) Electrical stimulation of visual cortex can immediately improve spatial vision. Curr Biol 26(14):1867–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhart RM, Cosman JD, Fukuda K, Woodman GF (2017) Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Atten Percept Psychophys 79(1):3–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Robertson CE, Kravitz DJ, Freyberg J, Baron-Cohen S, Baker CI (2013) Slower rate of binocular rivalry in autism. J Neurosci 33(43):16983–16991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson CE, Ratai E-M, Kanwisher N (2016) Reduced GABAergic action in the autistic brain. Curr Biol 26(1):80–85

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein J, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2(5):255–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schadow J, Lenz D, Thaerig S, Busch NA, Fründ I, Rieger JW, Herrmann CS (2007) Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG. Int J Psychophysiol 66(1):28–36

    Article  PubMed  Google Scholar 

  • Schafer D, Pappas S, Brody L, Jacobs R, Jones E (1984) Visual evoked potentials in a rabbit model of hepatic encephalopathy: I. Sequential changes and comparisons with drug-induced comas. Gastroenterology 86(3):540–545

    Article  CAS  PubMed  Google Scholar 

  • Schambra H, Bikson M, Wager T, DosSantos M, DaSilva A (2014) It’s all in your head: reinforcing the placebo response with tDCS. Brain Stimulat: Basic, Translat, Clin Res Neuromodulat 7(4):623–624

    Article  CAS  Google Scholar 

  • Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24(13):3379–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siniatchkin M, Sendacki M, Moeller F, Wolff S, Jansen O, Siebner H, Stephani U (2011) Abnormal changes of synaptic excitability in migraine with aura. Cereb Cortex 22(10):2207–2216

    Article  PubMed  Google Scholar 

  • Skyt I, Moslemi K, Baastrup C, Grosen K, Svensson P, Jensen T, Vase L (2018) Does conditioned pain modulation predict the magnitude of placebo effects in patients with neuropathic pain? Eur J Pain 22(4):784–792

    Article  CAS  PubMed  Google Scholar 

  • Spiegel DP, Hansen BC, Byblow WD, Thompson B (2012) Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex. PLoS ONE 7(5):e36220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, Morris PG, Matthews PM, Johansen-Berg H (2009) Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci 29(16):5202–5206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung K, Gordon B (2018) Transcranial direct current stimulation (tDCS) facilitates overall visual search response times but does not interact with visual search task factors. PLoS ONE 13(3):e0194640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sysoeva OV, Davletshina MA, Orekhova EV, Galuta IA, Stroganova TA (2016) Reduced oblique effect in children with autism spectrum disorders (ASD). Front Neurosci 9:512

    Article  PubMed  PubMed Central  Google Scholar 

  • Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3(4):151–162

    Article  CAS  PubMed  Google Scholar 

  • Tatum WO, Dworetzky BA, Schomer DL (2011) Artifact and recording concepts in EEG. J Clin Neurophysiol 28(3):252–263

    Article  PubMed  Google Scholar 

  • Teplan M (2002) Fundamentals of EEG measurement. Measure Sci Rev 2(2):1–11

    Google Scholar 

  • Thair H, Holloway AL, Newport R, Smith AD (2017) Transcranial direct current stimulation (tDCS): a beginner’s guide for design and implementation. Front Neurosci 11:641

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson RF, Spencer WA (1966) Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 73(1):16

    Article  CAS  PubMed  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79(1):61–78

    Article  Google Scholar 

  • Tseng P, Iu K-C, Juan C-HJS (2018) The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. Scienctific Rep 8(1):349

    Article  CAS  Google Scholar 

  • Turi Z, Csifcsák G, Boayue NM, Aslaksen P, Antal A, Paulus W, Groot J, Hawkins GE, Forstmann B, Opitz A (2019) Blinding is compromised for transcranial direct current stimulation at 1 mA for 20 minutes in young healthy adults. Eur J Neurosci 50(8):3261–3268

    Article  PubMed  Google Scholar 

  • Ullsperger M, Debener S (2010) Simultaneous EEG and fMRI: recording, analysis, and application. Oxford University Press, Oxford

    Book  Google Scholar 

  • van Loon AM, Knapen T, Scholte HS, John-Saaltink ES, Donner TH, Lamme VA (2013) GABA shapes the dynamics of bistable perception. Curr Biol 23(9):823–827

    Article  PubMed  CAS  Google Scholar 

  • Vannorsdall TD, Van Steenburgh JJ, Schretlen DJ, Jayatillake R, Skolasky RL, Gordon B (2016) Reproducibility of tDCS results in a randomized trial: failure to replicate findings of tDCS-induced enhancement of verbal fluency. Cogn Behav Neurol 29(1):11–17

    Article  PubMed  Google Scholar 

  • Vecchio F, Pellicciari MC, Miraglia F, Brignani D, Miniussi C, Rossini PM (2016) Effects of transcranial direct current stimulation on the functional coupling of the sensorimotor cortical network. Neuroimage 140:50–56

    Article  PubMed  Google Scholar 

  • Viganò A, D’Elia TS, Sava SL, Auvé M, De Pasqua V, Colosimo A, Di Piero V, Schoenen J, Magis D (2013) Transcranial direct current stimulation (tDCS) of the visual cortex: a proof-of-concept study based on interictal electrophysiological abnormalities in migraine. J Headache Pain 14(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Westwood SJ, Romani C (2017) Transcranial direct current stimulation (tDCS) modulation of picture naming and word reading: a meta-analysis of single session tDCS applied to healthy participants. Neuropsychologia 104:234–249

    Article  PubMed  Google Scholar 

  • Wiesman AI, Mills MS, McDermott TJ, Spooner RK, Coolidge NM, Wilson TW (2018) Polarity-dependent modulation of multi-spectral neuronal activity by transcranial direct current stimulation. Cortex 108:222–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson TW, McDermott TJ, Mills MS, Coolidge NM, Heinrichs-Graham E (2017) tDCS modulates visual gamma oscillations and basal alpha activity in occipital cortices: evidence from MEG. Cereb Cortex 28(5):1597–1609

    Article  PubMed Central  Google Scholar 

  • Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477(7363):171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemon V, Kaplan E, Ratliff F (1980) Bicuculline enhances a negative component and diminishes a positive component of the visual evoked cortical potential in the cat. Proc Natl Acad Sci 77(12):7476–7478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemon V, Kaplan E, Ratliff F (1986a) The role of GABA-mediated intracortical inhibition in the generation of visual evoked potentials. Front Clin Neurosci 3:287–295

    Google Scholar 

  • Zemon V, Victor J, Ratliff F (1986b) Functional subsystems in the visual pathways of humans characterized using evoked potentials. Front Clin Neurosci 3:203–210

    Google Scholar 

  • Zeneroli M, Penne A, Parrinello G, Cremonini C, Ventura E (1981) Comparative evaluation of visual evoked potentials in experimental hepatic encephalopathy and in pharmacologically induced coma-like states in rat. Life Sci 28(13):1507–1515

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This is a research project that was supported by a grant from the research center for College of Education, Deanship of Scientific Research at King Saud University.

Author information

Authors and Affiliations

Authors

Contributions

ABD and MJ planned the experiment. EM developed and provided the software for the EEG task. ABD collected the data. AA assessed the measurements. MJ and AD developed software for time–frequency analysis. ABD and MJ analysed the data. MJ and EM supervised the project. ABD wrote the manuscript, and MJ edited it. All authors reviewed the manuscript and agree with the content.

Corresponding author

Correspondence to A. Bin Dawood.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study received full ethical approval from the Department of Psychology University of Sheffield ethics committee (reference number: 016126) and was conducted in accordance with the Helsinki Declaration.

Informed consent

Written informed consent was obtained from all participants at the beginning of the experimental session.

Consent for publication

Permission was obtained from all participants to use their anonymized data for publication purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Alessandro D'Ausilio (University of Ferrara)

Reviewers: two researchers who prefer to remain anonymous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawood, A.B., Dickinson, A., Aytemur, A. et al. No effects of transcranial direct current stimulation on visual evoked potential and peak gamma frequency. Cogn Process 23, 235–254 (2022). https://doi.org/10.1007/s10339-022-01076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-022-01076-3

Keywords

Navigation