Skip to main content
Log in

Cyclodextrin-Modified Gold Nanoparticle Capillary Electrochromatography with Online Sample Stacking for Simultaneous and Sensitive Determination of Aminobenzoic Acid Isomers

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A newly-developed method of complete separation and sensitive determination of o-, m-, and p-aminobenzoic acid isomers was achieved by combining open-tubular columns for capillary electrochromatography (OT-CEC) and online sample stacking. In this study, spherical gold nanoparticles were modified by a covalent attachment of mono-6-thio-β-cyclodextrin, and OT-CEC was formed by immobilizing cyclodextrin-modified gold nanoparticles (CD-AuNP) on prederivatized 3-mercaptopropyl-trimethoxysilane fused-silica capillaries. Based on the theory of moving chemical reaction boundary, effects of several important factors such as the pH and concentration of running buffer and the conditions of stacking analytes were optimized. The optimized separations were carried out in 58 mmol/L HAc buffer at pH 3.0 using a capillary coated with CD-AuNP, while the optimized concentration was carried out in 50 mmol/L disodium hydrogen phosphate (pH 9.5). The linear ranges for m-, p-, and o-aminobenzoic acid were from 5.0 × 10−4–0.1, 5.0 × 10−4–0.1 and 1.0 × 10−4–0.1 mmol/L, respectively. And the detection limits (S/N = 3) were as low as 8.22 × 10−5, 8.21 × 10−5, and 3.76 × 10−5 mmol/L for m-, p-, and o-aminobenzoic acid, respectively. The run-to-run, day-to-day, and column-to-column reproducibilities of migration time were satisfactory with relative standard deviation values of less than 4.5 % in all cases. This method was successfully used in determining procaine hydrochloride injection sample with recoveries in the range of 96.1–106.6 % and relative standard deviations less than 5.0 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boughtflower RJ, Underwood T, Paterson CJ (1995) Chromatographia 40:329–335

    Article  CAS  Google Scholar 

  2. Gübitz G, Schmid MG (2008) J Chromatogr A 1204:140–156

    Article  Google Scholar 

  3. Guihen E, Glennon JD (2004) J Chromatogr A 1044:67–81

    Article  CAS  Google Scholar 

  4. Wang YC, Zeng ZR, Xie CH, Guan N, Fu EQ, Cheng JK (2001) Chromatographia 54:475–479

    Article  CAS  Google Scholar 

  5. Nilsson C, Birnbaum S, Nilsson S (2007) J Chromatogr A 1168:212–224

    Article  CAS  Google Scholar 

  6. Yu CJ, Su CL, Tseng WL (2006) Anal Chem 78:8004–8010

    Article  CAS  Google Scholar 

  7. Li M, Liu X, Jiang F, Guo L, Yang L (2011) J Chromatogr A 1218:3725–3729

    Article  CAS  Google Scholar 

  8. Hongjun E, Yang Y, Su P, Zhang W (2009) J Anal Chem 64:393–397

    Article  Google Scholar 

  9. Dai R, Tang L, Li H, Deng Y, Fu R, Parveen Z (2007) J Appl Polym Sci 106:2041–2046

    Article  CAS  Google Scholar 

  10. Wang Y, Zeng Z, Guan N, Cheng J (2001) Electrophoresis 22:2167–2172

    Article  CAS  Google Scholar 

  11. Frost NW, Jing M, Bowser MT (2010) Anal Chem 82:4682–4698

    Article  CAS  Google Scholar 

  12. Zhu Z, Zhou X, Yan N, Zhou L, Chen X (2010) J Chromatogr A 217:1856–1861

    Article  Google Scholar 

  13. Cao CX, He YZ, Li M, Qian YT, Yang L, Qu QS, Zhou SL, Chen WK (2002) J Chromatogr A 952:39–46

    Article  CAS  Google Scholar 

  14. Cao CX, He YZ, Li M, Qian YT, Gao MF, Ge LH, Zhou SL, Yang L, Qu QS (2002) Anal Chem 74:4167–4174

    Article  CAS  Google Scholar 

  15. Burgi DS (1993) Anal Chem 65:3726–3729

    Article  CAS  Google Scholar 

  16. Chien RL, Burgi DS (1992) Anal Chem 64:489A–496A

    Article  CAS  Google Scholar 

  17. Quirino JP, Iwai Y, Otsuka K, Terabe S (2000) Electrophoresis 21:2899–2903

    Article  CAS  Google Scholar 

  18. Quirino JP, Terabe S (1999) Anal Chem 71:1638–1644

    Article  CAS  Google Scholar 

  19. Quirino JP, Terabe S (2000) Anal Chem 72:1023–1030

    Article  CAS  Google Scholar 

  20. Kim B, Chung DS (2002) Electrophoresis 23:49–55

    Article  Google Scholar 

  21. Weiss DJ, Saunders K, Lunte CE (2001) Electrophoresis 22:59–65

    Article  CAS  Google Scholar 

  22. He JF, Yang WY, Yao FJ, Zhao H, Li XJ, Yuan ZB (2011) J Chromatogr A 1218:3816–3821

    Article  CAS  Google Scholar 

  23. Frost NW, Jing M, Bowser MT (2010) Anal Chem 82:4682-4698

  24. Zhu W, Zhang W, Fan LY, Shao J, Li S, Chen JL, Cao CX (2009) Talanta 78:1194–1200

    Article  CAS  Google Scholar 

  25. Jiang S, ter Horst JH, Jansens PJ (2007) Cryst Growth Des 8:37–43

    Article  Google Scholar 

  26. Svärd M, Nordström FL, Jasnobulka T, Rasmuson ÅC (2009) Cryst Growth Des 10:195–204

    Article  Google Scholar 

  27. He Y, Wu C, Kong W (2005) J Phys Chem 109:748–753

    Article  CAS  Google Scholar 

  28. Terekhova IV (2009) Mendeleev Commun 19:110–112

    Article  CAS  Google Scholar 

  29. Tatsuya Kitade KK (1998) Yutaka Wada. Anal Chim Acta 367:33–39

    Article  Google Scholar 

  30. Panadero S, Gómez-Hens A, Pérez-Bendito D (1998) Talanta 45:829–834

    Article  CAS  Google Scholar 

  31. Chen Y, Han FM, Yuan ZB (1996) Chin J Anal Lab 15:55–57

    CAS  Google Scholar 

  32. Turkevich J (1985) Gold Bull 18:86–91

    Article  CAS  Google Scholar 

  33. Jiang Y, Zhao H, Zhu NN, Lin YQ, Yu P, Mao LQ (2008) Angew. Chem Int Ed 47:8601–8604

    Article  CAS  Google Scholar 

  34. Liang X, Wei H, Cui Z, Deng J, Zhang Z, You X, Zhang XE (2011) Analyst 136:179–183

    Article  CAS  Google Scholar 

  35. Řezanka P, Navrátilová K, Žvátora P, Sýkora D, Matějka P, Mikšík I, Kašička V, Král V (2011) J Nanopart Res 13:5947–5957

    Article  Google Scholar 

  36. Shuang SM, Yang Y, Pan JH (2002) Anal Chim Acta 458:305–310

    Article  CAS  Google Scholar 

  37. Bartle KD, Myers P (2001) J Chromatogr A 916:3–23

    Article  CAS  Google Scholar 

  38. Yang Y, Shuang SM, Chao JB (2004) Acta Chim Sin 62:176–182

    CAS  Google Scholar 

  39. Cao CX, Zhang W, Qin WH, Li S, Zhu W, Liu W (2005) Anal Chem 77:955–963

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21145006) and the Foundation for the Returned Overseas Chinese Scholars.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1,007 kb)

Fig S1 UV–Vis spectroscopy of CD-AuNP dispersed in water.

Fig S2 Influence of pH on migration time. HAc buffer with concentration of 60 mmol/L and pH of 2.5, 2.75, 3.0, 3.25, 3.5, and 4.0 were used as the running buffer.

Fig S3 Effect of concentration on migration time. HAc buffer with pH of 3.0 and concentrations of HAcbuffer from 10 to 80 mM were used as the running buffer.

Fig S4 The comparisons of six different buffer salts on stacking results in the MCRB system. Concentration of buffer salt, 50 mmol/L, modulated with H2SO4 or NaOH to pH 9.0.

Fig S5 Influence of disodium hydrogen phosphate pH on stacking result in MCRB. Concentration of disodium hydrogen phosphate, 50 mmol/L, modulated with H2SO4 or NaOH to desired pH.

Fig S6 Influence of disodium hydrogen phosphate concentration on stacking result in MCRB. Concentrations of 58 mmol/L HAc buffer at pH 3.0 and 50 mmol/L at pH 9.5 hydrogen phosphate as stacking buffer.

Fig S7 The electrophoregrams of aminobenzoic acid isomers with normal CZE modeand with the online MCRB stacking mode under the optimized conditions,respectively. Peak identification: 1 m-aminobenzoic acid, 2 p-aminobenzoic acid, 3 o-aminobenzoic acid. Separation conditions: 58 mmol/L HAc buffer at pH 3.0, 50 mmol/L hydrogen phosphate (pH 9.5) as stacking buffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Dong, Y., Cui, H. et al. Cyclodextrin-Modified Gold Nanoparticle Capillary Electrochromatography with Online Sample Stacking for Simultaneous and Sensitive Determination of Aminobenzoic Acid Isomers. Chromatographia 77, 821–828 (2014). https://doi.org/10.1007/s10337-014-2686-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2686-9

Keywords

Navigation