Skip to main content
Log in

Gold nanoparticles-functionalized monolithic column for enantioseparation of eight basic chiral drugs by capillary electrochromatography

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Poly(glycidyl methacrylate)-co-(ethylene dimethacrylate) [poly(GMA-co-EDMA)] monoliths were prepared, and used as a support to attach gold nanoparticles (AuNP) via Au-S bond. Pepsin, acting as a chiral selector, was linked to the surface of the carboxyl-modified AuNP through a hydrochloride/N-hydroxysuccinimide coupling reaction. The material was characterized by scanning electron microscopy, energy dispersive X-ray spectrometry, transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy and N2 adsorption-desorption isotherm. The pepsin@AuNP@poly(GMA-co-EDMA) monolith showed preferable enantioselectivity for hydroxychloroquine (HCQ), chloroquine (CHQ), hydroxyzine (HXY), labetalol (LAB), nefopam (NEF), clenbuterol (CLE), amlodipine (AML) and chlorpheniramine (CHL) in capillary electrochromatography (CEC). These racemic drugs were monitored at the maximum absorption wavelength (220 nm for HXQ, CHQ, HXY, LAB, NEF; 240 nm for AML; 215 nm for CLE, CHL). In comparison with the pepsin@poly(GMA-co-EDMA) monolith loaded with 5 nm AuNP, the pepsin@poly(GMA-co-EDMA) monolith loaded with 13 nm AuNP shows significantly enhanced enantiomeric resolution (HCQ: 0.62 → 3.45; CHQ: 0.60 → 2.11; HXY: 0.49 → 2.30; LAB: 1.03 → 2.45, 1.45 → 3.46, 0 → 0.67; NEF: 0.53 → 1.29; CLE: 0.42 → 0.56; AML: 0 → 0.83; CHL: 0.24 → 0.55). Pepsin concentration, buffer pH value, buffer concentration and applied voltage were investigated in detail with (±) HCQ and (±) HXY as model analytes. The reproducibility of intra-day, inter-day and column-to-column were explored, and found to be satisfactory.

Schematic presentation of the preparation of gold nanoparticles (AuNP) modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hong T, Chen X, Xu Y, Cui X, Bai R, Jin C, Li R, Ji Y (2016) Preparation of graphene oxide-modified affinity capillary monoliths based on three types of amino donor for chiral separation and proteolysis. J Chromatogr A 1456:249–256. https://doi.org/10.1016/j.chroma.2016.06.025

    Article  CAS  PubMed  Google Scholar 

  2. Tarongoy FM Jr, Haddad PR, Quirino JP (2018) Recent developments in open tubular capillary Electrochromatography from 2016-2017. Electrophoresis 39(1):34–52. https://doi.org/10.1002/elps.201700280

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y, Wang W, Jia M, Liu R, Liu Q, Xiao H, Li J, Xue Y, Wang Y, Yan C (2018) Recent advances in microscale separation. Electrophoresis 39(1):8–33. https://doi.org/10.1002/elps.201700271

    Article  CAS  PubMed  Google Scholar 

  4. Declerck S, Vander Heyden Y, Mangelings D (2016) Enantioseparations of pharmaceuticals with capillary electrochromatography: a review. J Pharm Biomed Anal 130:81–99. https://doi.org/10.1016/j.jpba.2016.04.024

    Article  CAS  PubMed  Google Scholar 

  5. Carrasco-Correa EJ, Ramis-Ramos G, Herrero-Martinez JM (2015) Hybrid methacrylate monolithic columns containing magnetic nanoparticles for capillary electrochromatography. J Chromatogr A 1385: 77–84. https://doi.org/10.1016/j.chroma.2015.01.044

    Article  CAS  Google Scholar 

  6. He J, Wang X, Morill M, Shamsi S (2012) Amino acid bound surfactants: a new synthetic family of polymeric monoliths opening up possibilities for chiral separations in capillary electrochromatography. Anal. Chem. 84:5236–5242. https://doi.org/10.1021/ac300944z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Y, Heyden Y, Mangelings D (2012) Amylose-3,5-dimethylphenylcarbamate immobilized on monolithic silica stationary phases for chiral separations in capillary electrochromatography. Electrophoresis 33:1613–1623. https://doi.org/10.1002/elps.201100689

    Article  CAS  PubMed  Google Scholar 

  8. Tran L, Dixit S, Park JH (2014) Enantioseparation of basic chiral compounds on a clindamycin phosphate-silica/zirconia hybrid monolith by capillary electrochromatography. J Chromatogr A 1356:289–293. https://doi.org/10.1016/j.chroma.2014.06.089

    Article  CAS  Google Scholar 

  9. Aydogan C, Yilmaz F, Cimen D, Uzun L, Denizli A (2013) Enantioseparation of aromatic amino acids using CEC monolith with novel chiral selector, N-methacryloyl-L-histidine methyl ester. Electrophoresis 34:1908–1914. https://doi.org/10.1002/elps.201200125

    Article  CAS  PubMed  Google Scholar 

  10. Svec F, Lv Y (2015) Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem 87:250–273. https://doi.org/10.1021/ac504059c

    Article  CAS  PubMed  Google Scholar 

  11. Xie S, Svec F, Fréchet JM (1997) Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins. J Chromatogr A 775:65–72. https://doi.org/10.1016/s0021-9673(97)00254-9

    Article  CAS  PubMed  Google Scholar 

  12. Pucci V, Raggi MA, Svec F, Fréchet JM (2004) Monolithic columns with a gradient of functionalities prepared via photoinitiated grafting for separations using capillary electrochromatography. J Sep Sci 27:779–788. https://doi.org/10.1002/jssc.200401828

    Article  CAS  PubMed  Google Scholar 

  13. Zhao S, Yu T, Du Y (2019) An organic polymer monolith modified with an amino acid ionic liquid and graphene oxide for use in capillary electrochromatography: application to the separation of amino acids, β-blockers, and nucleotides. Microchim Acta 186:636. https://doi.org/10.1007/s00604-019-3723-z

    Article  CAS  Google Scholar 

  14. Nisansala G, ZiadEl R (2018) Poly(glyceryl monomethacrylate-co-ethylene glycol dimethacrylate) monolithic columns with incorporated bare and surface modified gluconamide fumed silica nanoparticles for hydrophilic interaction capillary electrochromatography. Talanta 179:632–640. https://doi.org/10.1016/j.talanta.2017.11.062

    Article  CAS  Google Scholar 

  15. Zheng H, Ma J, Feng W, Jia Q (2017) Specific enrichment of glycoproteins with polymer monolith functionalized with glycocluster grafted β-cyclodextrin. J Chromatogr A 1512:88–97. https://doi.org/10.1016/j.chroma.2017.07.032

    Article  CAS  PubMed  Google Scholar 

  16. Pérez-Cejuela HM, Carrasco-Correa EJ, Shahat A, Simó-Alfonso EF, Herrero-Martínez JM (2019) Incorporation of metal-organic framework amino-modified MIL-101 into glycidyl methacrylate monoliths for nano LC separation. J Sep Sci 42:834–842. https://doi.org/10.1002/jssc.201801135

    Article  CAS  PubMed  Google Scholar 

  17. Fresco-CalaaEnrique B, Carrasco-Correab J, Cárdenasa S, Herrero-Martínezb JM (2018) Carbon nanostructures incorporated on methacrylate monoliths for separation of small molecules by nano-liquid chromatography. Microchem J 139:222–229. https://doi.org/10.1016/j.microc.2018.03.003

    Article  CAS  Google Scholar 

  18. Zhao Q, Yang Y, Wang H (2019) Gold nanoparticles modified hollow carbon system for dual-responsive release and chemo-photothermal synergistic therapy of tumor. J Colloid Interface Sci 554:239–249. https://doi.org/10.1016/j.jcis.2019.07.005

    Article  CAS  PubMed  Google Scholar 

  19. Oseghaleac C, AbdalladM A, Uddinb K, Halla P (2019) Gold-based carbon-supported bimetallic catalysts for energy storage and biomedical applications. Microchem J 149:103917. https://doi.org/10.1016/j.microc.2019.05.018

    Article  CAS  Google Scholar 

  20. Zhang X, Liu Y, Deng J, Yu X (2019) Alloying of gold with palladium: an effective strategy to improve catalytic stability and chlorine-tolerance of the 3DOM CeO2-supported catalysts in trichloroethylene combustion. Appl Catal B Environ 257:117879. https://doi.org/10.1016/j.apcatb.2019.117879

    Article  CAS  Google Scholar 

  21. Shu P (2019) A ratiometric fluorescent probe for detection of uric acid based on the gold nanoclusters-quantum dots nanohybrid. Spectrochim Acta A Mol Biomol Spectrosc 222:117233. https://doi.org/10.1016/j.saa.2019.117233

    Article  CAS  Google Scholar 

  22. Terborg L, Masini J, Lin M, Lipponen K, Riekolla M (2015) Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase-ion exchange mixed mode. J Adv Res 6:441–448. https://doi.org/10.1016/j.jare.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  23. Wu C, Liang Y, Zhao Q, Qu Y, Zhang S, Wu Q, Liang Z (2014) Boronate affinity monolith with a gold nanoparticle-modified hydrophilic polymer as a matrix for the highly specific capture of glycoproteins. Chem Eur J 20:8737–8743. https://doi.org/10.1002/chem.201402787

    Article  CAS  PubMed  Google Scholar 

  24. Zhou L, Zhang B, Li S, Yu J, Guo X (2018) Enantioselective open-tubular capillary electrochromatography using a β-cyclodextrin gold nanoparticles–polydopamine coating as a stationary phase. New J Chem 42:17250. https://doi.org/10.1039/c8nj03234c

    Article  CAS  Google Scholar 

  25. Lv Y, Lin Z, Svec F (2012) Hypercrosslinked large surface area porous polymer monoliths for hydrophilic interaction liquid chromatography of small molecules featuring zwitterionic functionalities attached to gold nanoparticles held in layered structure. Anal Chem 84:8457–8460. https://doi.org/10.1021/ac302438m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu J, Ye F, Zhang A, Wei Z, Peng Y, Zhao S (2011) Preparation and characterization of silica monolith modified with bovine serum albumin-gold nanoparticles conjugates and its use as chiral stationary phases for capillary electrochromatography. J Sep Sci 34:2329–2336. https://doi.org/10.1002/jssc.201100102

    Article  CAS  Google Scholar 

  27. Li M, Tarawally M, Liu X, Liu X, Guo L, Yang L, Wang G (2013) Application of cyclodextrin-modified gold nanoparticles in enantioselective monolith capillary electrochromatography. Talanta 109:1–6. https://doi.org/10.1016/j.talanta.2013.03.035

    Article  CAS  PubMed  Google Scholar 

  28. Sun X, Yu T, Du Y, Ding W, Chen C (2019) Metal organic framework HKUST-1 modified with carboxymethyl-β-cyclodextrin for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs. Microchim Acta 186:626. https://doi.org/10.1007/s00604-019-3716-y

    Article  CAS  Google Scholar 

  29. Sun X, Du Y, Zhao S, Huang Z, Feng Z (2019) Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly(glycidyl methacrylate) nanoparticles. Microchim Acta 186:128. https://doi.org/10.1007/s00604-018-3163-1

    Article  CAS  Google Scholar 

  30. Fang L, Wang P, Wen X, Guo X, Luo L, Yu J, Guo X (2017) Layer-by-layer self-assembly of gold nanoparticles/thiols β-cyclodextrin coating as the stationary phase for enhanced chiral differentiation in open tubular capillary electrochromatography. Talanta 167:158–165. https://doi.org/10.1016/j.talanta.2017.01.082

    Article  CAS  Google Scholar 

  31. Zhang Y, Chen W, Zhu L, He P, Wang Q (2017) Enantiomeric separation of tryptophan by open tubular microchip capillary electrophoresis using polydopamine/gold nanoparticles conjugated DNA as stationary phase. Anal Methods 9:3561. https://doi.org/10.1039/c7ay01035d

    Article  CAS  Google Scholar 

  32. Jiang Z, Qu J, Tian X, Huo X, Zhang J, Guo X, Fang L (2019) Sol-gel technique for the preparation of β-cyclodextrin gold nanoparticles as chiral stationary phase in open-tubular capillary electrochromatography. J Sep Sci 42:1948–1954. https://doi.org/10.1002/jssc.201900071

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (Program No.: BK20141353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxiang Du.

Ethics declarations

Conflict of interesst

The authors have declared no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Du, Y., Yang, J. et al. Gold nanoparticles-functionalized monolithic column for enantioseparation of eight basic chiral drugs by capillary electrochromatography. Microchim Acta 187, 178 (2020). https://doi.org/10.1007/s00604-020-4144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4144-8

Keywords

Navigation