Skip to main content
Log in

Natural selection on wing and tail morphology in the Pacific Swallow

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Severe climates provide excellent opportunities to study natural selection in a study population, particularly when surviving and non-surviving individuals are directly observed. Classic examples include the effects of cold, rainy weather on hirundines that can forage only when weather conditions allow flying insects to be active. Previous studies have demonstrated the effects of natural selection on wing and tail morphologies. However, these studies focused on breeding grounds, thus it was difficult to distinguish foraging costs, mating efforts, and migration costs. In the current study, we compared wing and tail morphologies between individuals that survived and those that died during a severe, rainy winter in the Pacific Swallow, Hirundo tahitica, a short-tailed non-migratory hirundine. We found that survivors had longer wings than non-survivors. In addition, survivors had shorter tails than non-survivors after controlling for the correlation with wing length. No significant differences in the keel or bill sizes were found between the two groups with and without controlling for other variables, indicating that selection on body size or foraging apparatus should be negligible. These results indicated that selection favors Pacific Swallows with relatively short tails during foraging, which provides an insight into the evolution of the diverse tail length in hirundines.

Zusammenfassung

Natürliche Selektion bei Flügel- und Schwanzmorphologie der Südseeschwalbe

Harsche Klimabedingungen bieten hervorragende Gelegenheiten, die natürliche Selektion an einer Studienpopulation zu untersuchen, speziell wenn Überleben beziehungsweise Nichtüberleben der Individuen direkt beobachtet werden. Zu den klassischen Beispielen gehört der Einfluss kalten, regnerischen Wetters auf Schwalben, die nur unter Wetterbedingungen jagen können, die es Fluginsekten gestatten, aktiv zu sein. Frühere Studien konnten die Auswirkungen der natürlichen Selektion auf Flügel- und Schwanzmorphologie zeigen. Allerdings konzentrierten sich diese Untersuchungen bisher auf die Brutgebiete und es war somit schwer, zwischen den Kosten für Nahrungssuche, Partnersuche und Zug zu unterscheiden. In der vorliegenden Arbeit verglichen wir die Flügel- und Schwanzmorphologie von überlebenden Individuen der Südseeschwalbe Hirundo tahitica, einer kurzschwänzigen, nicht ziehenden Schwalbenart, mit der anderer Individuen, welche in einem strengen, regnerischen Winter umkamen. Es zeigte sich, dass die Überlebenden längere Flügel hatten als die Nichtüberlebenden. Außerdem hatten die Überlebenden, unter Berücksichtigung der Korrelation mit der Flügellänge, kürzere Schwänze als die Nichtüberlebenden. Es gab keine signifikanten Unterschiede zwischen den beiden Gruppen bezüglich der Größe von Brustbein und Schnabel, weder mit noch ohne Berücksichtigung anderer Variablen, was darauf hindeutet, dass die Selektion auf Körpergröße oder den Nahrungsaufnahmeapparat zu vernachlässigen sein sollte. Unsere Ergebnisse zeigen, dass Südseeschwalben mit relativ kurzen Schwänzen bei der Futtersuche einen Selektionsvorteil haben, was wiederum Einblicke in die Evolution unterschiedliche Schwanzlängen bei Schwalben gestattet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allison PD (1999) Logistic regression using the SAS system—theory and application. SAS Institute, NC

    Google Scholar 

  • Allison PD (2012) When can you safely ignore multicollinearity? http://www.statisticalhorizons.com/multicollinearity. Accessed 22 August 2016

  • Amundsen T, Pärn H (2006) Female coloration: review of functional and nonfunctional hypotheses. In: Hill GE, McGraw KJ (eds) Bird coloration, vol II. Function and evolution. Harvard UniversityPress, Cambridge

    Google Scholar 

  • Bailey LD, van de Pol M (2016) Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events. J Anim Ecol 85:85–96

    Article  PubMed  Google Scholar 

  • Barbosa A (1999) Tail streamers and flight performance in Barn Swallows: natural or sexual selection? Ardeola 46:101–109

    Google Scholar 

  • Brodie ED III, Moore AJ, Janzen F (1995) Visualizing and quantifying natural selection. Trends Ecol Evol 10:313–318

    Article  PubMed  Google Scholar 

  • Brown CR, Brown MB (1998) Intense natural selection on body size and wing and tail asymmetry in Cliff Swallows during severe weather. Evolution 52:1461–1475

    Article  PubMed  Google Scholar 

  • Brown CR, Brown MB (1999) Natural selection on tail and bill morphology in Barn Swallows Hirundo rustica during severe weather. Ibis 141:652–659

    Article  Google Scholar 

  • Brown CR, Brown MB (2013) Where has all the road kill gone? Curr Biol 23:R233–R234

    Article  CAS  PubMed  Google Scholar 

  • Buchanan KL, Evans MR (2000) The effect of tail streamer length on aerodynamic performance in the Barn Swallow. Behav Ecol 11:228–238

    Article  Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton

    Google Scholar 

  • Evans MR (1998) Selection on Swallow tail streamers. Nature 394:233–234

    Article  CAS  Google Scholar 

  • Evans MR (1999) Reply: length of tail streamers in Barn Swallows. Nature 397:115–116

    CAS  Google Scholar 

  • Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121

    Article  Google Scholar 

  • Garamszegi LZ, Calhim S, Dochtermann N, Hegyi G, Hurd PL, Jørgensen C, Kutsukake N, Lajeunesse MJ, Pollard KA, Schielzeth H, Symonds MRE, Nakagawa S (2009) Changing philosophies and tools for statistical inferences in behavioral ecology. Behav Ecol 20:1363–1375

    Article  Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815

    Article  Google Scholar 

  • Grant PR, Grant BR (2013) 40 years of evolution: Darwin’s Finches on Daphne Major island. Princeton University Press, Princeton

    Google Scholar 

  • Griffith SC, Pryke SR (2006) Benefits to females of assessing color display. In: Hill GE, McGraw KJ (eds) Bird coloration, vol II. Function and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • Hasegawa M, Arai E, Watanabe M, Nakamura M (2010) Mating advantage of multiple male ornaments in the Barn Swallow Hirundo rustica gutturalis. Ornithol Sci 9:141–148

    Article  Google Scholar 

  • Hasegawa M, Arai E, Kutsukake N (2016) Evolution of tail fork depth in genus Hirundo. Ecol Evol 6:851–858

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber GH, Turbek SP, Bostwick KS, Safran RJ (2016) Comparative analysis reveals migratory Swallows (Hirundinidae) have less pointed wings than residents. Biol J Linn Soc. doi:10.1111/bij.12875 (in press)

  • Janzen FJ, Stern HS (1998) Logistic regression for empirical studies of multivariate selection. Evolution 52:1564–1571

    Article  PubMed  Google Scholar 

  • Japan Meteorological Agency (2016a) Naze 2016 (tsuki goto no atai) http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_s1.php?prec_no=88&block_no=47909&year=2016&month=1&day=&view. Accessed 22 August 2016 (in Japanese)

  • Japan Meteorological Agency (2016b) Huyu no tenkou http://www.jma.go.jp/jma/press/1603/01d/tenko161202.html. Accessed 22 August 2016 (in Japanese)

  • Johnson AE, Mitchell JS, Brown MB (2016) Convergent evolution in social Swallows (Aves: Hirundinidae). Ecol Evol. doi:10.1002/ece3.2641

    Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang A, Gibert P, Beerli P (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261

    Article  CAS  PubMed  Google Scholar 

  • Kingsolver JG, Diamond SE, Siepielski AM, Carlson SM (2012) Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol Ecol 26:1101–1118

    Article  Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    Article  PubMed  Google Scholar 

  • Matyjasiak P, Jablonski PG, Olejniczak I, Boniecki P, Lee S-D (1999) Foraging cost of a long tail ornament: an experiment with Sand Martin females. Ethology 105:521–530

    Article  Google Scholar 

  • Matyjasiak P, Jablonski PG, Olejniczak I, Boniecki P (2000) Imitating the initial evolutionary stage of a tail ornament. Evolution 54:704–711

    Article  CAS  PubMed  Google Scholar 

  • Matyjasiak P, Marzal A, Navarro C, de Lope F, Møller AP (2009) Fine morphology of experimental tail streamers and flight manoeuvrability in the House Martin Delichon urbica. Funct Ecol 23:389–396

    Article  Google Scholar 

  • McClure HE (1974) Migration and survival of the birds of Asia. US army medical component. SEATO Medical Project, Bangkok

    Google Scholar 

  • Mikuriya M (1968) Some field notes on birds of Amami Islands, Northern Ryukyus. Tori 18:314–327

    Google Scholar 

  • Møller AP (1994a) Phenotype-dependent arrival time and its consequences in a migratory bird. Behav Ecol Sociobiol 35:115–122

    Article  Google Scholar 

  • Møller AP (1994b) Sexual selection and the Barn Swallow. Oxford University Press, Oxford

    Google Scholar 

  • Møller AP, Barbosa A (2001) Flight, fitness and sexual selection. Behav Ecol 12:511–512

    Article  Google Scholar 

  • Møller AP, de Lope F, Lopez Caballero JM (1995) Foraging costs of a tail ornament: experimental evidence from two populations of Barn Swallows Hirundo rustica with different degrees of sexual size dimorphism. Behav Ecol Sociobiol 37:289–295

    Article  Google Scholar 

  • Norberg RÅ (1994) Swallow tail streamer is a mechanical device for self deflection of tail leading edge, enhancing aerodynamic efficiency and flight manoeuvrability. Proc R Soc Lond B 257:227–233

    Article  Google Scholar 

  • Park KJ, Evans MR, Buchanan KL (2000) Assessing the aerodynamic effects of tail elongations in the House Martin (Delichon urbica): implications for the initial selection pressures in hirundines. Behav Ecol Sociobiol 48:364–372

    Article  Google Scholar 

  • R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL https://www.R-project.org/

  • Sheldon FH, Winkler DW (1993) Intergeneric phylogenetic relationships of Swallows estimated by DNA-DNA hybridization. Auk 110:798–824

    Article  Google Scholar 

  • Stinchcombe JR, Agrawal AF, Hohenlohe PA, Arnold SJ, Blows MW (2008) Estimating nonlinear selection gradients using quadratic regression coefficients: double or nothing? Evolution 62:2435–2440

    Article  PubMed  Google Scholar 

  • Swaddle JP, Witter MS, Cuthill IC (1994) The analysis of fluctuating asymmetry. Anim Behav 48:986–989

    Article  Google Scholar 

  • Turner AK (1983) Time and energy constraints on the brood size of Swallows, Hirundo rustica, and Sand Martins, Riparia riparia. Oecologia 59:331–338

    Article  PubMed  Google Scholar 

  • Turner AK (2004) Family Hirundinidae (Swallows and Martins). In: del Hoyo J, Elliot A, Sargatal J, Christie DA (eds) Handbook of the birds of the world, vol 9. Lynx, Barcelona

    Google Scholar 

  • Turner AK, Rose C (1994) A handbook to the Swallows and Martins of the world. Helm, London

    Google Scholar 

  • van Dongen S, Molenberghs G, Matthysen E (1999) The statistical analysis of fluctuating asymmetry: REML estimation of a mixed regression model. J Evol Biol 12:94–102

    Article  Google Scholar 

  • van Doorn GS, Weissing FJ (2004) The evolution of female preferences for multiple indicators of quality. Am Natur 164:173–186

    Article  PubMed  Google Scholar 

  • Van Valen L (2005) The statistics of variation. In: Hallgrímsson B, Hall BK (eds) Variation: a central concept in biology. Academic Press, Burlington

    Google Scholar 

  • Warrick DR, Hedrick TL, Biewener AA, Crandell KE, Tobalske BW (2016) Foraging at the edge of the world: low-altitude, high-speed manoeuvering in Barn Swallows. Philos Tran R Soc B 371:20150391

    Article  Google Scholar 

  • Waugh DR, Hails CJ (1983) Foraging ecology of a tropical aerial feeding bird guild. Ibis 125:200–217

    Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciate all the house owners who allowed us to study Pacific Swallows at their homes. We also thank Dr Taku Mizuta for managing our field study. We appreciate Dr Nobuyuki Kutsukake and the members of the Laboratory of Evolutionary Studies of Biosystems, Sokendai. We thank Dr Yohei Terai and Takahiro Kato for their technical support in the laboratory experiments. M. H. was supported by a Research Fellowship of the Japan Society for the Promotion of Science (15J10000). We thank two anonymous reviewers for their comments that helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Hasegawa.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasegawa, M., Arai, E. Natural selection on wing and tail morphology in the Pacific Swallow. J Ornithol 158, 851–858 (2017). https://doi.org/10.1007/s10336-017-1446-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-017-1446-7

Keywords

Navigation