Skip to main content
Log in

Can House Finches (Carpodacus mexicanus) use non-visual cues to discriminate the carotenoid content of foods?

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Carotenoid pigments are involved in different physiological processes (e.g., immunoenhancement, antioxidant activity) in addition to coloring plumage and integuments. As animals cannot synthesize these pigments de novo, it has been proposed that carotenoids constitute a limiting resource that birds may specifically seek in their food. Confirming this hypothesis, it was recently found that birds can discriminate between carotenoid-enriched diets and control diets, even if both have the same color, suggesting that there may be underlying non-visual (e.g., olfactory, taste) mechanisms for detecting carotenoid presence or enrichment in foods. In this study, we performed two experiments with male House Finches (Carpodacus mexicanus) to test if this species is able to discriminate between (1) carotenoid-enriched and plain sunflower seeds (while controlling for food coloration), and (2) plain seeds scented with β-ionone, which is a carotenoid-degradation product that is common in many fruits and is one of the most powerful flavor-active organic compounds, or a sham odorant. We found that finches did not show significant food preferences in either experiment, indicating that they did not use odor or flavor cues associated with carotenoids to discriminate between foods. However, our results do not rule out the possibilities that other flavors or odors can be used in discrimination or that finches may learn to discriminate flavors and odors over longer periods of time or at other times of year through post-ingestive feedback mechanisms.

Zusammenfassung

Können Hausgimpel ( Carpodacus mexicanus ) andere als optische Informationen verwenden, um den Karotinoid-Gehalt ihrer Nahrung einzuschätzen?

Über die Farbgebung von Gefieder und Haut hinaus sind Karotinoid-Farbstoffe an diversen physiologischen Prozessen beteiligt (Stärkung des Immunsystems, Antioxidantien-Aktivität). Da Tiere diese Farbstoffe nicht selbst synthetisieren können, wurde bereits die Idee präsentiert, Karotinoide stellten einen Ressource-Faktor dar, den Vögel gezielt in ihrer Nahrung suchen. Als Bestätigung dieser Hypothese wurde kürzlich herausgefunden, dass Vögel zwischen Karotinoid-angereicherter und Kontroll-Nahrung unterscheiden können, auch wenn beide die gleiche Farbe haben. Dies legt nahe, dass es außer optischen noch andere Informationen geben muss (z. B. Geruch, Geschmack), die als Mechanismen dienen können, das Vorhandensein von, und den Gehalt an, Karotinioden in der Nahrung festzustellen. In unserer Untersuchung führten wir ein Zwei-Stufen-Experiment mit männlichen Hausgimpeln (Carpodacus mexicanus) durch, um zu testen, ob diese Art unterscheiden kann zwischen (1) Karotinoid-angereicherten und reinen Sonnenblumensamen (bei gleicher Farbe), und (2) reinen, mit β-Iononen parfürmierten Samenkörnern und solchen mit einem anderen, ähnlichen Duft (β-Ionone sind ein in vielen Früchten vorkommendes Abbauprodukt von Karotinoiden und eine der am stärksten duftenden organischen Verbindungen überhaupt). Wir stellten fest, dass die Finken in den Experimenten keinerlei signifikante Bevorzugung einer der Nahrungsstoffe zeigten, was darauf hinwies, dass sie in der Wahl ihrer Nahrung keine mit Karotinoiden zusammenhängende Geschmacks- oder Geruchs-Informationen benutzten. Andererseits schließen unsere Ergebnisse aber auch nicht die Möglichkeit aus, dass in der Unterscheidung von Nahrungsstoffen ein anderer Geruch oder Geschmack benutzt wurde, oder dass die Finken die Unterscheidung anhand von Geruch oder Geschmack über einen längeren Zeitraum oder zu anderen Jahreszeiten über Rückkopplungsmechanismen in der Verdauung lernen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bang BG, Cobb S (1968) The size of the olfactory bulb in 108 species of birds. Auk 85:55–61

    Article  Google Scholar 

  • Bascuñán AL, Tourville EA, Toomey MB, McGraw KJ (2009) Food color preferences of molting house finches (Carpodacus mexicanus) in relation to sex and plumage coloration. Ethology 115:1066–1073

    Article  Google Scholar 

  • Beekwilder J, Van der Meer IM, Simic A, Uitdewilligen J, Van Arkel J, De Vos RCH, Jonker H, Verstappen FWA, Bouwmeester HJ, Sibbesen O, Qvist I, Mikkelsen JD, Hall RD (2008) Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit. Biofactors 34:57–66

    PubMed  Google Scholar 

  • Blount JD (2004) Carotenoids and life-history evolution in animals. Arch Biochem Biophys 430:10–15

    Article  CAS  PubMed  Google Scholar 

  • Blount JD, McGraw KJ (2008) Signal functions of carotenoid colouration. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 4: natural functions. Birkhauser, Basel, pp 213–236

    Chapter  Google Scholar 

  • Britton G (2008) Functions of carotenoid metabolites and breakdown products. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 4: natural functions. Birkhauser, Basel, pp 309–324

    Chapter  Google Scholar 

  • Butler MW, Toomey MB, McGraw KJ (2011) How many color metrics do we need? Evaluating how different color-scoring procedures explain carotenoid pigment content in avian bare-part and plumage ornaments. Behav Ecol Sociobiol 65:401–413

    Article  Google Scholar 

  • Cate T, Rowe C (2007) Biases in signal evolution: learning makes a difference. Trends Ecol Evol 22:380–387

    Article  PubMed  Google Scholar 

  • Catoni C, Metzger B, Shaefer MH, Bairlen F (2011) Garden Warbler, Sylvia borin, detect carotenoids in food but differ strongly in individual food choice. J Ornithol 152:153–159

    Article  Google Scholar 

  • Champely S (2009) Pwr: basic functions for power analysis. http://CRAN.R-project.org/package=pwr

  • Clark L, Mason JR (1987) Olfactory discrimination of plant volatiles by the European starling. Anim Behav 35:227–235

    Article  Google Scholar 

  • Costantini D, Coluzza C, Fanfani A, Dell’Omo G (2007) Effects of carotenoid supplementation on colour expression, oxidative stress and body mass in rehabilitated captive adult kestrels (Falco tinnunculus). J Comp Physiol B 177:723–731

    Article  CAS  PubMed  Google Scholar 

  • Das D, Wilkie SE, Hunt DM, Bowmaker JK (1999) Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria: microspectrophotometry and opsin sequences. Vis Res 39:2801–2815

    Article  CAS  PubMed  Google Scholar 

  • Hill GE (1993) House finch (Carpodacus mexicanus). In: Poole A (ed) The birds of North America online. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Hill GE (2002) A red bird in a brown bag: the function and evolution of colorful plumage in the house finch. Oxford Ornithology Series. Oxford University Press, Oxford

  • Hill GE, Inouye CY, Montgomerie R (2002) Dietary carotenoids predict plumage coloration in wild house finches. Proc R Soc Lond B 269:1119–1124

    Article  CAS  Google Scholar 

  • Kelly DJ, Marples NM (2004) The effects of novel odour and colour cues on food acceptance by the zebra finch, Taeniopygia guttata. Anim Behav 68:1049–1054

    Article  Google Scholar 

  • Keyser AJ, Hill GE (1999) Condition-dependent variation in the blue-ultraviolet coloration of a structurally based plumage ornament. Proc R Soc Lond B 266:771–774

    Article  Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121

    Article  Google Scholar 

  • McGraw KJ (2006) The mechanics of carotenoid coloration in birds. In: Hill GE, McGraw KJ (eds) Bird coloration. I. Mechanisms and measurements. Harvard University Press, Cambridge, pp 177–242

    Google Scholar 

  • McGraw KJ, Hill GE (2000) Carotenoid-based ornamentation and status signaling in the house finch. Behav Ecol 11:520–527

    Article  Google Scholar 

  • McGraw KJ, Mackillop EA, Dale J, Hauber ME (2002) Different colors reveal different information: how nutritional stress affects the expression of melanin- and structurally based ornamental coloration. J Exp Biol 205:3747–3755

    Article  PubMed  Google Scholar 

  • McGraw KJ, Nolan PM, Crino OL (2006) Carotenoid accumulation strategies for becoming a colourful house finch: analyses of plasma and liver pigments in wild moulting birds. Funct Ecol 20:678–688

    Article  Google Scholar 

  • Mennerat A, Bonnadonna F, Perret P, Lambrechts MM (2005) Olfactory conditioning experiments in a food-searching passerine bird in semi-natural conditions. Behav Process 70:264–270

    Article  CAS  Google Scholar 

  • Murphy ME, King JR (1987) Dietary discrimination by molting white-crowned sparrows given diets differing only in sulfur amino acid concentration. Am Nat 60:279–289

    CAS  Google Scholar 

  • Nevitt GA, Velt RR, Kareiva P (1995) Dimethyl sulphide as a foraging cue for Antarctic Procellariiform seabirds. Nature 376:680–682

    Article  CAS  Google Scholar 

  • Oh KP, Badyaev AV (2006) Adaptive genetic complementarity in mate choice coexists with preference for elaborate sexual traits. Proc R Soc Lond B 273:1913–1919

    Google Scholar 

  • Pulliam RH (1975) Diet optimization with nutrient constraints. Am Nat 109:765–768

    Article  Google Scholar 

  • Rodd FH (2002) A possible non-sexual origin of mate preference: are male guppies mimicking fruit? Proc R Soc Lond B 269:475–481

    Article  Google Scholar 

  • Roth TC, Cox JC, Lima SL (2008) Can foraging birds assess predation risk by scent? Anim Behav 76:2021–2027

    Article  Google Scholar 

  • Royama T (1970) Factors governing the hunting behaviour and selection of food by the great tit (Parus major). J Anim Ecol 39:619–668

    Article  Google Scholar 

  • Schaefer HM, McGraw KJ, Catoni C (2008) Bird use fruit color as honest signal of dietary antioxydant rewards. Funct Ecol 22:303–310

    Article  Google Scholar 

  • Senar JC, Møller AP, Ruiz I, Negro JJ, Broggi J, Hohtola E (2010) Specific appetite for carotenoids in a colorful bird. PLoS One 5(5):e10716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shulkin J (1992) Sodium hunger. Cambridge University Press, Cambridge

    Google Scholar 

  • Smith C, Barber I, Wootton RJ, Chittka L (2004) A receiver bias in the origin of three-spined stickleback mate choice. Proc R Soc Lond B 271:949–955

    Article  Google Scholar 

  • Stockton-Shields C (1997) Sexual selection and the dietary color preferences of house finches. MSc thesis, Auburn University, Auburn

  • Svensson PA, Wong BBM (2011) Carotenoid-based signals in behavioural ecology: a review. Behaviour 148:131–189

    Article  Google Scholar 

  • Team RDC (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Toomey MB, McGraw KJ (2011) The effects of dietary carotenoid supplementation and retinal carotenoid accumulation on vision-mediated foraging in the house finch. PLoS One 6(6):e21653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tordoff MG (2001) Calcium: taste, intake, and appetite. Physiol Rev 81:1567–1597

    Article  CAS  PubMed  Google Scholar 

  • Vorobyev M, Osorio D, Bennett ATD, Marshall NJ, Cuthill IC (1998) Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol A 183:621–633

    Article  CAS  PubMed  Google Scholar 

  • Wallraff HG (2004) Avian olfactory navigation: its empirical foundation and conceptual state. Anim Behav 67:189–204

    Article  Google Scholar 

  • Werner SJ, Kimball BA, Provenza FD (2008) Food color, flavor, and conditioned avoidance among red-winged blackbirds. Physiol Behav 93:110–117

    Article  CAS  PubMed  Google Scholar 

  • Willson MF, Whelan CJ (1990) The evolution of fruit color in fleshy-fruited plants. Am Nat 136:790

    Article  Google Scholar 

  • Winterhalter P, Rouseff R (2002) Carotenoid-derived aroma compounds: an introduction. Chapter 1, pp 1–17. ACS Symposium Series, vol 802. American Chemical Society, Washington, DC

  • Yearsley JM, Villalba JJ, Gordon IJ, Kyriazakis I, Speakman JR, Tolkamp BJ, Illius AW, Duncan AJ (2006) A theory of associating food types with their postingestive consequences. Am Nat 167:705

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the National Science Foundation (IOS-0910357 to K.J.M. and 0923694 to M.B.T. and K.J.M.) and from the Fyssen Foundation to M.G. We thank DSM Inc., Heerlen, Netherlands, for donating the carotenoid supplement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Giraudeau.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 191KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giraudeau, M., Toomey, M.B. & McGraw, K.J. Can House Finches (Carpodacus mexicanus) use non-visual cues to discriminate the carotenoid content of foods?. J Ornithol 153, 1017–1023 (2012). https://doi.org/10.1007/s10336-012-0829-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-012-0829-z

Keywords

Navigation