Skip to main content

Advertisement

Log in

An overview on the advances in cardiovascular interventional MR imaging

  • Review
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Interventional cardiovascular magnetic resonance imaging (iCMR) represents a new discipline whose systematic development will foster minimally invasive interventional procedures without radiation exposure. New generations of open, wide and short bore MR scanners and real time sequences made cardiovascular intervention possible. MR compatible endovascular catheters and guide-wires are needed for delivery of devices such as stents or atrial septal defect (ASD) closures. Catheter tracking is based on active and passive approaches. Currently performed MR-guided procedures are used to monitor, navigate and track endovascular catheters and to deliver local therapeutic agents to targets, such as infarcted myocardium and vascular walls. Heating of endovascular MR catheters, guide-wires and devices during imaging still presents high safety risks. MR contrast media improve the capabilities of MR imaging by enhancing blood signal, pathologic targets (such as myocardial infarctions and atherosclerotic plaques), endovascular catheters and by tracking injected therapeutic agents. Labeling injected soluble therapeutic agents, genes or cells with MR contrast media enables interventionalists to ensure the administration of the drugs in the target and to trace their distribution in the targets. The future clinical use of this iCMR technique requires (1) high spatial and temporal resolution imaging, (2) special catheters and devices and (3) effective therapeutic agents, genes or cells. These conditions are available at a low scale at the present time and need to be developed in the near future. Such progress will lead to improved patient care and minimize invasiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuon E, Kaye A (2002) Radiation exposure in invasive cardiology —an ongoing challenge for cardiologists, industry, and control organs, business briefing; global healthcare, pp 55–8

  2. Lindholdt JS (2003). Radiocontrast induced nephropathy. Eur Vasc Endovasc Surg 25: 296–04

    Article  Google Scholar 

  3. Raval AN, Karmakar PV, Guttman MA, Ozturk C, Sampath S, DeSilva R, Aviles RJ, Xu M, Wright VJ, Schenke WH, Kocaturk O, Dick AJ, Raman VK, Atalar E, McVeigh ER and Lederman RJ (2006). Real-time magnetic resonance imaging–guided endovascular recanalization of chronic total arterial occlusion in a swine model. Circulation 113: 1101–107

    Article  PubMed  Google Scholar 

  4. Rezaee M, Yeung AC, Altman P, Lubbe D, Takeshi S, Schwartz RS, Stertzer S and Altman JD (2001). Evaluation of the percutaneous intramyocardial injection for local myocardial treatment. Catheter Cardiovasc Interv 53: 271–76

    Article  CAS  PubMed  Google Scholar 

  5. Esakof DD, Maysky M, Losordo DW, Vale PR, Lathi K, Pastore JO, Symes JF and Isner JM (1999). Intraoperative multiplane transesophageal echocardiography for guiding direct myocardial gene transfer of vascular endothelial growth factor in patients with refractory angina pectoris. Hum Gene Ther 10: 2307–314

    Article  CAS  PubMed  Google Scholar 

  6. Lund GK, Stork A, Saeed M, Bansmann MP, Gerken JH, Muller V, Mester J, Higgins CB, Adam G and Meinertz T (2004). Acute myocardial infarction: evaluation with first-pass-enhancement and delayed enhancement MR imaging compared with 201Tl SPECT imaging. Radiology 232: 49–7

    Article  PubMed  Google Scholar 

  7. Inoue M, Itoh H, Ueda M, Naruko T, Kojima A, Komatsu R, Doi K, Ogawa Y, Tamura N, Takaya K, Igaki T, Yamashita J, Chun TH, Masatsugu K, Becker AE and Nakao K (1998). Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation 98: 2108–116

    CAS  PubMed  Google Scholar 

  8. Saeed M, Saloner D, Weber O, Martin A, Henk C and Higgins C (2005). MRI in guiding and assessing intramyocardial therapy. Eur Radiol 15: 851–63

    Article  CAS  PubMed  Google Scholar 

  9. Hillenbrand CM, Jesberger JA, Wong EY, Zhang S, Chang DT, Wacker FK, Lewin JS and Duerk JL (2006). Toward rapid high resolution in vivo intravascular MRI: evaluation of vessel wall conspicuity in a porcine model using multiple imaging protocols. J Magn Reson Imaging 23: 135–44

    Article  PubMed  Google Scholar 

  10. Miquel ME, Hegde S, Muthurangu V, Corcoran BJ, Keevil SF, Hill DL and Razavi RS (2004). Visualization and tracking of aninflatable ballon catheter using SSFP in a flow phantom andin the heart and great vessels of patients. Magn Reson Med 51: 988–95

    Article  PubMed  Google Scholar 

  11. Paetzel C, Zorger N, Bachthaler M, Hamer OW, Stehr A, Feuerbach S, Lenhart M, Völk M, Herold T and Kasprzak Nitz WR (2005). Magnetic resonance-guided percutaneous angioplasty of femoral and popliteal artery stenoses using real-time imaging and intra-arterial contrast-enhanced magnetic resonance angiography. Invest Radiol 40: 257–62

    Article  PubMed  Google Scholar 

  12. Corti R, Badimon J, Mizsei G, Macaluso F, Lee M, Licato P, Viles-Gonzalez JF, Fuster V and Sherman W (2005). Real time magnetic resonance guided endomyocardial local delivery. Heart 91: 348–53

    Article  CAS  PubMed  Google Scholar 

  13. Sodickson DK, Hardy CJ, Zhu Y, Giaquinto RO, Gross P, Kenwood G, Niendorf T, Lejay H, McKenzie CA, Ohliger MA, Grant AK and Rofsky NM (2005). Rapid volumetric MRI using parallelimaging with order-of-magnitude accelerations and a 32-element RF coil array: feasibility and implications. Acad Radiol 12: 626–35

    Article  PubMed  Google Scholar 

  14. McVeigh ER, Guttman MA, Kellman P, Raval AN and Lederman RJ (2005). Real-time, interactive MRI for cardiovascular interventions. Acad Radiol 12: 1121–127

    Article  PubMed  Google Scholar 

  15. Gutberlet M, Noeske R, Schwinge K, Freyhardt P, Felix R and Niendorf T (2006). Comprehensive cardiac magnetic resonance imaging at 3.0 Tesla: feasibility and implications for clinical applications. Invest Radiol 41: 154–67

    Article  PubMed  Google Scholar 

  16. Quick HH, Kuehl H, Kaiser G, Bosk S, Debatin JF and Ladd ME (2002). Inductively coupled stent antennas in MRI. Magn Reson Med 48: 781–90

    Article  PubMed  Google Scholar 

  17. Elgort DR, Hillenbrand CM, Zhang S, Wong EY, Rafie S, Lewin JS and Duerk JL (2006). Image-guided and -monitored renal artery stenting using only MRI. J Magn Reson Imaging 23: 619–27

    Article  PubMed  Google Scholar 

  18. Wacker FK, Hillenbrand C, Elgort DR, Zhang S, Duerk JL and Lewin JS. (2005). MR imaging-guided percutaneous angioplasty and stent placement in a swine model comparison of open- and closed-bore scanners. Acad Radiol 12: 1085–088

    Article  PubMed  Google Scholar 

  19. Krombach GA, Pfeffer JG, Kinzel S, Katoh M, Gunther RW and Buecker A (2005). MR-guided percutaneous intramyocardial injection with an MR-compatible catheter: feasibility and changes in T1 values after injection of extracellular contrast medium in pigs. Radiology 235: 487–94

    Article  PubMed  Google Scholar 

  20. Lardo AC, McVeigh ER, Jumrussirikul P, Berger RD, Calkins H, Lima J and Halperin HR (2000). Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation 102: 698–05

    CAS  PubMed  Google Scholar 

  21. Bakker CJ, Bos C and Weinmann HJ (2001). Passive tracking of catheters and guidewires by contrast-enhanced MR fluoroscopy. Magn Reson Med 45: 17–3

    Article  CAS  PubMed  Google Scholar 

  22. Buecker A, Spuentrup E, Schmitz-Rode T, Kinzel S, Pfeffer J, Hohl C, Vaals JJ and van Guenther RW (2004). Use of a nonmetallic guide wire for magnetic resonance-guided coronary artery catherization. Invest Radiol 39: 656–60

    Article  PubMed  Google Scholar 

  23. Dumoulin CL, Souza SP and Darrow RD (1993). Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med 29: 411–15

    Article  CAS  PubMed  Google Scholar 

  24. Leung DA, Debatin JF, Wildermuth S, McKinnon GC, Holtz D, Dumoulin CL, Darrow RD, Hofmann E and von Schulthess GK (1995). Intravascular MR tracking catheter: preliminary experimental evaluation. AMJ Am J Roentgenol 164: 1265–270

    CAS  Google Scholar 

  25. von McKinnon GC, Debatin JF, Leung DA, Wildermuth S, Holtz DJ and von Schulthess GK (1996). Towards active guidewire visualization in interventional magnetic resonance imaging. Magn Reson Mater Phys 4: 13–8

    Article  CAS  Google Scholar 

  26. von Ladd ME, Erhart P, Debatin JF, Hofmann E, Boesiger P, Schulthess GK and von McKinnon GC (1997). Guidewire antennas for MR fluoroscopy. Magn Reson Med 37: 891–97

    Article  CAS  PubMed  Google Scholar 

  27. Adam G, Glowinski A, Neuerburg J, Bucker A, Vaals JJ and van Gunther RW (1998). Visualization of MR-compatible catheters by electrically induced local field inhomogeneities: evaluation in vivo. J Magn Reson Imaging 8: 209–13

    Article  CAS  PubMed  Google Scholar 

  28. Glowinski A, Kursch J, Adam G, Bucker A, Noll TG and Gunther RW (1998). Device visualization for interventional MRI using local magnetic fields: basic theory and its application to catheter visualization. IEEE Trans Med Imaging 17: 786–93

    Article  CAS  PubMed  Google Scholar 

  29. Ladd ME, Zimmermann GG, Quick HH, Debatin JF, Boesiger P, Schulthess GK and von McKinnon GC (1998). Active MR visualization of a vascular guidewire in vivo. J Magn Reson Imaging 8: 220–25

    Article  CAS  PubMed  Google Scholar 

  30. Quick HH, Ladd ME, Zimmermann-Paul GG, Erhart P, Hofmann E, Debatin JF and von Schulthess GK (1999). Single-loop coil concepts for intravascular magnetic resonance imaging. Magn Reson Med 41: 751–58

    Article  CAS  PubMed  Google Scholar 

  31. Kahn T, Lewin JS and Duerk JL (2000). Interventional MRI-challenge for radiology. J Magn Reson Imaging 12: 511

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Q, Wendt M, Aschoff AJ, Zheng L, Lewin JS and Duerk JL (2000). Active MR guidance of interventional devices with target-navigation. Magn Reson Med 44: 56–5

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Q, Wendt M, Aschoff AJ, Lewin JS and Duerk JL (2001). A multielement RF coil for MRI guidance of interventional devices. J Magn Reson Imaging 14: 56–2

    Article  CAS  PubMed  Google Scholar 

  34. Duerk JL, Wong EY and Lewin JS (2002). A brief review of hardware for catheter tracking in magnetic resonance imaging. Magn Reson Mater Phys 13: 199–08

    Article  Google Scholar 

  35. Elgort DR, Wong EY, Hillenbrand CM, Wacker FK, Lewin JS and Duerk JL (2003). Real-time catheter tracking and adaptive imaging. J Magn Reson Imaging 18: 621–26

    Article  PubMed  Google Scholar 

  36. Hillenbrand CM, Elgort DR, Wong EY, Reykowski A, Wacker FK, Lewin JS and Duerk JL (2004). Active device tracking and high-resolution intravascular MRI using a novel catheter-based, opposed-solenoid phased array coil. Magn Reson Med 51: 668–75

    Article  PubMed  Google Scholar 

  37. Saeed M, Lee R, Martin A, Weber O, Krombach GA, Schalla S, Lee M, Saloner D and Higgins CB (2004). Transendocardial delivery of extracellular tracers using a combination of X-ray and MRI fluoroscopy (XMR)-guidance: feasibility study in dogs. Radiology 231: 689–96

    Article  PubMed  Google Scholar 

  38. Saeed M, Henk C, Weber O, Martin A, Wilson M, Saloner D and Higgins CB (2004). Deployment of endovascular stent for aortic coarctation repair under XMR-guidance. J Cardiovasc Magn Reson 6: 81–2

    Google Scholar 

  39. Wacker FK, Hillenbrand C, Elgort DR, Zhang S, Duerk JL and Lewin JS (2005). MR imaging-guided percutaneous angioplasty and stent placement in a swine model comparison of open- and closed-bore scanners. Acad Radiol 12: 1085–088

    Article  PubMed  Google Scholar 

  40. Wacker FK, Hillenbrand CM, Duerk JL and Lewin JS (2005). MR-guided endovascular interventions: device visualization, tracking, navigation, clinical applications, and safety aspects.. Magn Reson Imaging Clin N Am 13: 431–39

    Article  PubMed  Google Scholar 

  41. Saeed M, Henk CB, Weber O, Martin A, Wilson M, Shunk K, Saloner D and Higgins CB (2006). Delivery and assessment of endovascular stents to repair aortic coarctation using MR and X-ray Imaging. J Magn Reson Imaging 24: 371–78

    Article  PubMed  Google Scholar 

  42. Saeed M, Martin AJ, Lee RJ, Weber O, Revel D, Saloner D and Higgins CB (2006). MR guidance of targeted injections into border and core of scarred myocardium in pigs. Radiology 240: 419–26

    Article  PubMed  Google Scholar 

  43. Nanz D, Weishaupt D, Quick HH and Debatin JF (2000). TE-switched double-contrast enhanced visualization of vascular system and instruments for MR-guided interventions. Magn Reson Med 43: 645–48

    Article  CAS  PubMed  Google Scholar 

  44. Omary RA, Unal O, Koscielski DS, Frayne R, Korosec FR, Mistretta CA, Strother CM and Grist TM (2000). Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters. J Vasc Interv Radiol 11: 1079–085

    Article  CAS  PubMed  Google Scholar 

  45. Karmarkar PV, Kraitchman DL, Izbudak I, Hofmann LV, Amado LC, Fritzges D, Young R, Pittenger M, Bulte JW and Atalar E (2004). MR-trackable intramyocardial injection catheter. Magn Reson Med 51: 1163–172

    Article  CAS  PubMed  Google Scholar 

  46. Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, Hare JM and Bulte JW (2003). In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107: 2290–293

    Article  PubMed  Google Scholar 

  47. Dick AJ, Guttman MA, Raman VK, Peters DC, Pessanha BS, Hill JM, Smith S, Scott G, McVeigh ER and Lederman RJ (2003). Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation 108: 2899–904

    Article  PubMed  Google Scholar 

  48. Engellau L, Olsrud J, Brockstedt S, Albrechtsson U, Norgren L, Stahlberg F and Larsson EM (2000). MR evaluation ex vivo and in vivo of a covered stent-graft for abdominal aortic aneurysms: ferromagnetism, heating, artifacts and velocity mapping. J Magn Reson Imaging 12: 112–21

    Article  CAS  PubMed  Google Scholar 

  49. Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M and Link J (2001). On the heating of linear conductive strucures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 13: 105–14

    Article  CAS  PubMed  Google Scholar 

  50. Ladd ME and Quick HH (2000). Reduction of resonant RF heating in intravascular catheters using coaxial chockes. Magn Reson Med 43: 615–19

    Article  CAS  PubMed  Google Scholar 

  51. Kuehne T, Saeed M, Higgins CB, Gleason K, Krombach GA, Weber OM, Martin AJ, Turner D, Teitel D and Moore P (2003). Endovascular stents in pulmonary valve and artery in swine: feasibility study of MR imaging-guided deployment and postinterventional assessment. Radiology 226: 475–81

    Article  PubMed  Google Scholar 

  52. Bartels LW, Smits HF, Bakker CJ and Viergever MA (2001). MR imaging of vascular stents: effects of susceptibility, flow, and radiofrequency eddy currents. J Vasc Interv Radiol 12: 365–71

    Article  CAS  PubMed  Google Scholar 

  53. Bartels LW, Bakker CJ and Viergever MA (2002). Improved lumen visualization in metallic vascular implants by reducing RF artifacts. Magn Reson Med 47: 171–80

    Article  PubMed  Google Scholar 

  54. Kuehne T, Saeed M, Moore P, Gleason K, Reddy G, Teitel D and Higgins CB (2002). Influence of blood-pool contrast media on MR imaging and flow measurements in the presence of pulmonary arterial stents in swine. Radiology 223: 439–45

    Article  PubMed  Google Scholar 

  55. Buecker A, Spuentrup E, Ruebben A, Mahnken A, Nguyen TH, Kinzel S and Gunther RW (2004). New metallic MR stents for artifact-free coronary MR angiography: feasibility study in a swine model. Invest Radiol 39: 250–53

    Article  CAS  PubMed  Google Scholar 

  56. Mekle R, Hofmann E, Scheffler K and Bilecen D (2006). A polymer-based MR-compatible guidewire: a study to explore new prospects for interventional peripheral magnetic resonance angiography (ipMRA). J Magn Reson Imaging 23: 145–55

    Article  PubMed  Google Scholar 

  57. Paetzel C, Zorger N, Seitz J, Volk M, Nitz WR, Herold T, Feuerbach S and Lenhart M (2005). Intraarterial contrast material-enhanced magnetic resonance angiography of the aortoiliac system. J Vasc Interv Radiol 15: 981–84

    Google Scholar 

  58. Paetzel C, Zorger N, Hamer OW, Seitz J, Schleicher T, Feuerbach S, Nitz WR, Lenhart M and Herold T (2006). Intra-arterial MR angiography in the iliac system: initial clinical experience with 25 patients. Br J Radiol 79: 298–02

    Article  CAS  PubMed  Google Scholar 

  59. Yang X, Atalar E, Li D, Serfaty JM, Wang D, Kumar A and Cheng L (2001). Magnetic resonance imaging permits in vivo monitoring of catheter-based vascular gene delivery. Circulation 104: 1588–590

    Article  CAS  PubMed  Google Scholar 

  60. Yang X and Atalar E (2006). MRI-guided gene therapy. FEBS lett 580: 2958–961

    Article  CAS  PubMed  Google Scholar 

  61. Pearlman JD, Laham RJ and Simons M (2000). Coronary angiogenesis: detection in vivo with MR imaging sensitive to collateral neocirculation-preliminary study in pigs. Radiology 214: 801–09

    CAS  PubMed  Google Scholar 

  62. Saeed M, Weber O, Lee R, Do L, Martin A, Saloner D, Ursell P, Robert P, Corot C and Higgins CB (2006). Discrimination of myocardial acute and chronic (scar) infarctions on delayed contrast enhanced magnetic resonance imaging with intravascular magnetic resonance contrast media. J Am Coll Cardiol 48: 1961–968

    Article  PubMed  Google Scholar 

  63. Saeed M, Lee RJ, Weber O, Do L, Martin A, Ursell P, Saloner D and Higgins CB (2006). Scarred myocardium imposes additional burden on remote viable myocardium despite a reduction in the extent of area with late contrast MR enhancement. Eur Radiol 16: 827–36

    Article  PubMed  Google Scholar 

  64. Fuchs S, Dib N, Cohen BM, Okubagzi P, Diethrich EB, Campbell A, Macko J, Kessler PD, Rasmussen HS, Epstein SE and Kornowski R (2006). A randomized, double-blind, placebo-controlled, multicenter, pilot study of the safety and feasibility of catheter-based intramyocardial injection of AdVEGF121 in patients with refractory advanced coronary artery disease. Catheter Cardiovasc Interv 68: 372–78

    Article  PubMed  Google Scholar 

  65. Guttman MA, Dick AJ, Raman VK, Arai AE, Lederman RJ and McVeigh ER (2004). Imaging of myocardial infarction for diagnosis and intervention using real-time interactive MRI without ECG-gating or breath-holding. Magn Reson Med 52: 354–61

    Article  PubMed  Google Scholar 

  66. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ and Judd RM (1999). Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100: 1992–002

    CAS  PubMed  Google Scholar 

  67. Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, Vogl TJ, Martin H, Schachinger V, Dimmeler S and Zeiher AM (2003). Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI). Circulation 108: 2212–218

    Article  CAS  PubMed  Google Scholar 

  68. Hamer OW, Borisch I, Paetzel C, Nitz WR, Seitz J, Feuerbach S and Zorger N (2006). In vitro evaluation of stent patency and in-stent stenoses in 10 metallic stents using MR angiography. Br J Radiol 79: 636–43

    Article  CAS  PubMed  Google Scholar 

  69. Hamer OW, Finkenzeller T, Borisch I, Paetzel C, Zorger N, Feuerbach S and Nitz W (2005). In vivo evaluation of patency and in-stent stenoses after implantation of nitinol stents in iliac arteries using MR angiography. AJR Am J Roentgenol 185: 1282–288

    Article  PubMed  Google Scholar 

  70. Boll DT, Lewin JS, Duerk JL, Smith D, Subramanyan K and Merkle EM (2004). Assessment of automatic vessel tracking techniques in preoperative planning of transluminal aortic stent graft implantation. J Comput Assist Tomogr 28: 278–85

    Article  PubMed  Google Scholar 

  71. Schalla S, Saeed M, Higgins CB, Weber O, Martin A and Moore P (2005). Balloon sizing and transcatheter closure of acute atrial septal defects guided by magnetic resonance fluoroscopy: assessment and validation in a large animal model. J Magn Reson Imaging 21: 204–11

    Article  PubMed  Google Scholar 

  72. Schalla S, Saeed M, Higgins CB, Martin A, Weber O and Moore P (2003). Magnetic resonance imaging-guided cardiac catheterization in swine model of atrial septal defect. Circulation 108: 1865–870

    Article  PubMed  Google Scholar 

  73. Raman VK, Karmarkar PV, Guttman MA, Dick AJ, Peters DC, Ozturk C, Pessanha BS, Thompson RB, Raval AN, DeSilva R, Aviles RJ, Atalar E, McVeigh ER and Lederman RJ (2005). Real-time magnetic resonance-guided endovascular repair of experimental abdominal aortic aneurysm in swine. J Am Coll Cardiol 45: 2069–077

    Article  PubMed  Google Scholar 

  74. Razavi R, Hill DL, Keevil SF, Miquel ME, Muthurangu V, Hegde S, Rhode K, Barnett M, Vaals J , van Hawkes DJ, Baker E (2003). Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet 362: 1877–882

    Article  PubMed  Google Scholar 

  75. Breuckmann F, Nassenstein K, Boese D, Opherk D, Quick HH, Barkhausen J and Erbel R (2006). Successful nitinol stent implantation in a large coronary aneurysm: post-interventional patency assessment by magnetic resonance imaging. Int J Cardiovasc Imaging 22: 501–05

    Article  PubMed  Google Scholar 

  76. Eggebrecht H, Zenge M, Ladd ME, Erbel R and Quick HH (2006). In vitro evaluation of current thoracic aortic stent-grafts for real-time MR-guided placement. J Endovasc Ther 13: 62–1

    Article  PubMed  Google Scholar 

  77. Mahnken AH, Chalabi K, Jalali F, Gunther RW and Buecker A (2004). Magnetic resonance-guided placement of aortic stents grafts: feasibility with real-time magnetic resonance fluoroscopy. J Vasc Interv Radiol 15: 189–95

    PubMed  Google Scholar 

  78. Eggebrecht H, Kühl H, Kaiser GM, Aker S, Zenge MO, Stock F, Breuckmann F, Grabellus F, Ladd ME, Mehta RH, Erbel R and Quick HH (2006). Feasibility of real-time magnetic resonance-guided stent-graft placement in a swine model of descending aortic dissection. Eur Heart J 27: 613–20

    Article  PubMed  Google Scholar 

  79. Manke C, Nitz WR, Djavidani B, Strotzer M, Lenhart M, Volk M, Feuerbach S, Link J (2001) MR-guided stent placement in iliac arterial stenoses: a feasibility study. Radiology 219:527–34

    Google Scholar 

  80. Kee ST, Ganguly A, Daniel BL, Wen Z, Butts K, Shimikawa A, Pelc NJ, Fahrig R and Dake MD (2005). MR-guided transjugular intrahepatic portosystemic shunt creation with use of a hybrid radiography/MR system. J Vasc Interv Radiol 16: 227–34

    PubMed  Google Scholar 

  81. Saeed M, Saloner D, Martin A, Do L, Weber O, Ursell CP, Jacquier A, Lee R, Higgins CB (2007) Adeno-associated viral vector-encoding vascular endothelial growth factor gene: effect on cardiovascular MR perfusion and infarct resorption measurements in swine. Radiology 10.1148/radiol.2432060928

  82. Martin AJ, Weber OM, Saeed M and Roberts TP (2003). Steady-state imaging for visualization of endovascular interventions. Magn Reson Med 50: 434–38

    Article  PubMed  Google Scholar 

  83. Maes RM, Lewin JS, Duerk JL and Wacker FK (2005). Combined use of the intravascular blood-pool agent, gadomer, and carbon dioxide: a novel type of double-contrast magnetic resonance angiography (MRA). J Magn Reson Imaging 21: 645–49

    Article  PubMed  Google Scholar 

  84. Wacker FK, Maes RM, Jesberger JA, Nour SG, Duerk JL and Lewin JS (2003). MR imaging-guided vascular procedures using CO2 as a contrast agent. AJR Am J Roentgenol 181: 485–89

    PubMed  Google Scholar 

  85. Pathak AP, Gimi B, Glunde K, Ackerstaff E, Artemov D and Bhujwalla ZM (2004). Molecular and functional imaging of cancer: advancesin MRI and MRS. Meth Enzymol 386: 3–0

    CAS  PubMed  Google Scholar 

  86. Aime S, Cabella C, Colombatto S, Geninatti Crich S, Gianolio E and Maggioni F (2002). Insight into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging 16: 394–06

    Article  PubMed  Google Scholar 

  87. Crich SG, Biancone L, Cantaluppi V, Duo D, Esposito G, Russo S, Camussi G and Aime S (2004). Improved route for the visualization of stem cells labeled with a Gd/Eu-chelate as dual (MRI and fluorescence) agent. Magn Reson Med 51: 938–44

    Article  CAS  PubMed  Google Scholar 

  88. Modo M, Mellodew K, Cash D, Fraser SE, Meade TJ, Price J and Williams SC (2004). Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21: 311–17

    Article  PubMed  Google Scholar 

  89. Vuu K, Xie J, McDonald MA, Bernardo M, Hunter F, Zhang Y, Li K, Bednarski M and Guccione S (2005). Gadolinium–rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug Chem 16: 995–99

    Article  CAS  PubMed  Google Scholar 

  90. Conner SD and Schmid SL (2003). Regulated portals of entry into the cell. Nature 422: 37–4

    Article  CAS  PubMed  Google Scholar 

  91. Kanal E and Shellock FG (1996). Safety manual on magnetic resonance imaging contrast agents. Lippincott-RavenHealthcare, Cedar Knolls

    Google Scholar 

  92. Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, Walczak P, Segars WP, Chen HH, Fritzges D, Izbudak I, Young RG, Marcelino M, Pittenger MF, Solaiyappan M, Boston RC, Tsui BMW, Wahl RL and Bulte JWM (2005). Dynamic imaging of allogeneic mesenchymal stem cell trafficking to myocardial infarction. Circulation 112: 1451–461

    Article  PubMed  Google Scholar 

  93. Ittrich H, Lange C, Dahnke H, Zander AR, Adam G and Nolte-Ernsting C (2005). Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3T. Rofo 177: 1151–163

    CAS  PubMed  Google Scholar 

  94. Katoh M, Spuentrup E, Buecker A, Manning WJ, Guenther RW and Botnar RM (2006). MR coronary vessel wall imaging: comparison between radial and spiral k-space sampling. J Magn Reson Imaging 23: 757–62

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maythem Saeed.

Additional information

O. Saborowski was a postdoctoral fellow at the Department of Radiology, University of California–San Francisco. The studies in this review article were supported by a grant from National Institutes of Health (RO1 HL72956 to Dr. Saeed).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saborowski, O., Saeed, M. An overview on the advances in cardiovascular interventional MR imaging. Magn Reson Mater Phy 20, 117–127 (2007). https://doi.org/10.1007/s10334-007-0074-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-007-0074-2

Keywords

Navigation