Skip to main content

MRI for Interventions and Surgery

  • Living reference work entry
  • First Online:
PanVascular Medicine

Abstract

Magnetic resonance imaging (MRI) is a major modality for the imaging of vascular disease. Improvements in magnetic resonance angiography (MRA) techniques have provided an important complimentary technology to computed tomography angiography (CTA) for vascular imaging. In this chapter, we review the basic principles of MRI and MRA, including the pulse sequences used to generate MRA images. Next we introduce the clinical applications of MRA to evaluation of vascular disease and to planning and postoperative surveillance of vascular interventions. Common artifacts with MRA are reviewed, and side effects of gadolinium-based contrast agents are examined. Evaluation of patients with pacemakers and implanted devices including endovascular devices is discussed. Finally a comparison of CTA to MRA and the appropriateness of each modality in various clinical scenarios are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Artery of Adamkiewicz:

An artery present in some patients which is thought to provide a dominant source of perfusion to the spinal cord.

Electrocardiogram (ECG)-gated MRA:

A method which times image acquisition to the cardiac cycle.

Endovascular aortic repair:

Deployment of an endovascular stent-graft in the aorta to repair various aortic pathologies.

Fat saturation:

A method which suppresses the signal from fat with an RF pulse that utilizes the small difference in resonance frequency between fat and water.

Gadolinium:

Contrast material used for magnetic resonance imaging.

Gradient-echo sequences:

A method which uses RF and field gradients to produce images, particularly T1-weighted images.

Implantable cardioverter-defibrillator:

An implantable device capable of cardioversion and defibrillation.

Implanted devices:

Devices which are indwelling in the patient and can be a contraindication to magnetic resonance imaging.

IVC filters:

A device placed in the inferior vena cava to prevent pulmonary embolism.

Magnetic field gradients:

Magnetic fields which vary in space, used to generate spatial resolution in MRI.

Magnetic resonance angiography:

Technique of MRI used to image blood vessels, either with or without contrast material.

Magnetic resonance imaging:

Technique of imaging using magnetic fields and radiofrequency field.

Methemoglobin:

A component of clotted blood which can mimic contrast material on magnetic resonance imaging.

Nephrogenic systemic fibrosis:

A severe reaction to gadolinium-containing contrast material, seen in patients with renal failure.

Nitinol:

A material contained in many stent-grafts.

Pacemakers:

A device used to provide pacing impulses to the heart.

Pulse sequence:

Particular combination of radiofrequency and magnetic field gradients that are used to create the image.

Radiofrequency field:

Oscillating magnetic field used to generate magnetic resonance images.

Steady-state free precession:

A method used to image the aorta and its branches without contrast material.

Susceptibility artifact:

An artifact arising from concentrated gadolinium which can create the appearance of vessel stenosis.

Thoracic endovascular aortic repair:

Deployment of an endovascular stent-graft in the thoracic aorta to repair various aortic pathologies.

Time-of-flight imaging:

⊓

Zenith AAA stent-graft system:

A stent-graft used for abdominal aortic aneurysm repair.

References

  • Atar E, Belenky A, Hadad M et al (2006) MR angiography for abdominal and thoracic aortic aneurysms: assessment before endovascular repair in patients with impaired renal function. Am J Roentgenol 186:386–393

    Article  Google Scholar 

  • Bi X, Deshpande V, Carr J et al (2006) Coronary artery magnetic resonance angiography (MRA): a comparison between the whole-heart and volume-targeted methods using a T2-prepared SSFP sequence. J Cardiovasc Magn Reson 8:703–707

    Article  PubMed  Google Scholar 

  • Bongartz G, Mayr M, Bilecen D (2008) Magnetic resonance angiography (MRA) in renally impaired patients: when and how. Eur J Radiol 66:213–219

    Article  PubMed  Google Scholar 

  • Brenner DJ, Hall EJ (2007) Computed tomography – an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  • Broome DR (2008) Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. Eur J Radiol 66:230–234

    Article  PubMed  Google Scholar 

  • Cowper SE (2005) Nephrogenic systemic fibrosis: the nosological and conceptual evolution of nephrogenic fibrosing dermopathy. Am J Kidney Dis 46:763–765

    Article  PubMed  Google Scholar 

  • Cowper SE, Robin HS, Steinberg SM et al (2000) Scleromyxoedema-like cutaneous diseases in renal dialysis patients. Lancet 356:1000–1001

    Article  PubMed  CAS  Google Scholar 

  • Erley CM, Bader BD, Berger ED et al (2004) Gadolinium-based contrast media compared with iodinated media for digital subtraction angiography in azotaemic patients. Nephrol Dial Transplant 19:2526–2531

    Article  PubMed  CAS  Google Scholar 

  • Finn JP, Baskaran V, Carr JC et al (2002) Thorax: low-dose contrast-enhanced three dimensional MR angiography with subsecond temporal resolution – initial results. Radiology 224:896–904

    Article  PubMed  Google Scholar 

  • Fisher GJ, Datta S, Wang Z et al (2000) c-Jun-dependent inhibition of cutaneous procollagen transcription following ultraviolet irradiation is reversed by all-trans retinoic acid. J Clin Invest 106:663–670

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Francois CJ, Tuite D, Deshpande V et al (2008) Unenhanced MR angiography of the thoracic aorta: initial clinical evaluation. AJR Am J Roentgenol 190:902–906

    Article  PubMed  Google Scholar 

  • Gebker R, Gomaa O, Schnackenburg B et al (2007) Comparison of different MRI techniques for the assessment of thoracic aortic pathology: 3D contrast enhanced MR angiography, turbo spin echo and balanced steady state free precession. Int J Cardiovasc Imaging 23:747–756

    Article  PubMed  Google Scholar 

  • Gilliet M, Cozzio A, Burg G et al (2005) Successful treatment of three cases of nephrogenic fibrosing dermopathy with extracorporeal photopheresis. Br J Dermatol 152:531–536

    Article  PubMed  CAS  Google Scholar 

  • Golding LP, Provenzale JM (2008) Nephrogenic systemic fibrosis: possible association with a predisposing infection. Am J Roentgenol 190:1069–1075

    Article  Google Scholar 

  • Grobner T (2006) Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108

    Article  PubMed  CAS  Google Scholar 

  • Groves EM, Bireley W, Dill K et al (2007) Quantitative analysis of ECG-gated high-resolution contrast-enhanced MR angiography of the thoracic aorta. Am J Roentgenol 188:522–528

    Article  Google Scholar 

  • Hartnell GG (2001) Imaging of aortic aneurysms and dissections: CT and MRI. J Thorac Imaging 16:35–46

    Article  PubMed  CAS  Google Scholar 

  • Hatrick AG, Jarosz JM, Irvine AT (1997) Gadopentate dimeglumine as an alternative contrast agent for use in interventional procedures. Clin Radiol 52:948–952

    Article  PubMed  CAS  Google Scholar 

  • Hiramoto JS, Reilly LM, Schneider DB et al (2007) The effect of magnetic resonance imaging on stainless-steel Z-stent–based abdominal aortic prosthesis. J Vasc Surg 45:472–474

    Article  PubMed  Google Scholar 

  • Ho VB, Prince MR (1998) Thoracic MR aortography: imaging techniques and strategies. Radiographics 18:287–309

    Article  PubMed  CAS  Google Scholar 

  • Hope TA, High WA, Leboit PE et al (2009) Nephrogenic systemic fibrosis in rats treated with erythropoietin and intravenous iron. Radiology 253:390–398

    Article  PubMed  Google Scholar 

  • Insko EK, Siegelman ES, Stolpen AH (2000) Subacute clot mimicking flow in a thrombosed arterial bypass graft on two-dimensional time-of-flight and three-dimensional contrast-enhanced MRA. J Magn Reson Imaging 11:192–194

    Article  PubMed  CAS  Google Scholar 

  • Insko EK, Kulzer LM, Fairman RM et al (2003) MR imaging for the detection of endoleaks in recipients of abdominal aortic stent-grafts with low magnetic susceptibility. Acad Radiol 10:509–513

    Article  PubMed  Google Scholar 

  • Jimenez SA, Artlett CM, Sandorfi N et al (2004) Dialysis-associated systemic fibrosis (nephrogenic fibrosing dermopathy): study of inflammatory cells and transforming growth factor beta1 expression in affected skin. Arthritis Rheum 50:2660–2666

    Article  PubMed  CAS  Google Scholar 

  • Korosec FR, Frayne R, Grist TM et al (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Imaging 8:322–344

    Google Scholar 

  • Levine JM, Taylor RA, Elman LB et al (2004) Involvement of skeletal muscle in dialysis-associated systemic fibrosis (nephrogenic fibrosing dermopathy). Muscle Nerve 30:569–577

    Article  PubMed  Google Scholar 

  • Li A, Wong CS, Wong MK et al (2006) Acute adverse reactions to magnetic resonance contrast media – gadolinium chelates. Br J Radiol 79:368–371

    Article  PubMed  CAS  Google Scholar 

  • Lutz AM, Willmann JK, Pfammatter T et al (2003) Evaluation of aortoiliac aneurysm before endovascular repair: comparison of contrast enhanced magnetic resonance angiography with multidetector row computed tomographic angiography with an automated analysis software tool. J Vasc Surg 37:619–627

    Article  PubMed  Google Scholar 

  • Maki JH, Wilson GJ, Eubank WB et al (2007) Steady-state free precession MRA of the renal arteries: breath-hold and navigator-gated techniques vs. CE-MRA. J Magn Reson Imaging 26:966–973

    Article  PubMed  Google Scholar 

  • Mendoza FA, Artlett CM, Sandorfi N et al (2006) Description of 12 cases of nephrogenic fibrosing dermopathy and review of the literature. Semin Arthritis Rheum 35:238–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer BC, Oldenburg A, Frericks BB et al (2008) Quantitative and qualitative evaluation of the influence of different table feeds on visualization of peripheral arteries in CT angiography of aortoiliac and lower extremity arteries. Eur Radiol 18:1546–1555

    Article  PubMed  CAS  Google Scholar 

  • Muhs BE, Vincken KL, van Prehn J et al (2006) Dynamic cine-CT angiography for the evaluation of the thoracic aorta; insight in dynamic changes with implications for thoracic endograft treatment. Eur J Vasc Endovasc Surg 32:532–536

    Article  PubMed  CAS  Google Scholar 

  • Nazarian S, Roguin A, Zviman MM et al (2006) Clinical utility and safety of a protocol for noncardiac and cardiac magnetic resonance imaging of patients with permanent pacemakers and implantable-cardioverter defibrillators at 1.5 tesla. Circulation 114:1277–1284

    Article  PubMed  PubMed Central  Google Scholar 

  • Nijenhuis RJ, Jacobs MJ, Jaspers K et al (2007) Comparison of magnetic resonance with computed tomography angiography for preoperative localization of the Adamkiewicz artery in thoracoabdominal aortic aneurysm patients. J Vasc Surg 45:677–685

    Article  PubMed  Google Scholar 

  • Okada S, Katagiri K, Kumazaki T et al (2001) Safety of gadolinium contrast agent in hemodialysis patients. Acta Radiol 42:339–341

    Article  PubMed  CAS  Google Scholar 

  • Prince MR, Zhang HL, Roditi GH et al (2009) Risk factors for NSF: a literature review. J Magn Reson Imaging 30:1298–1308

    Article  PubMed  Google Scholar 

  • Siegelman ES, Charafeddine R, Stolpen AH et al (2000) Suppression of intravascular signal on fat-saturated contrast-enhanced thoracic MR arteriograms. Radiology 217:115–118

    Article  PubMed  CAS  Google Scholar 

  • Sorensen TS, Korperich H, Greil GF et al (2004) Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation 110:163–169

    Article  PubMed  Google Scholar 

  • Swaminathan S, Ahmed I, McCarthy JT et al (2006) Nephrogenic fibrosing dermopathy and high-dose erythropoietin therapy. Ann Intern Med 145:234–235

    Article  PubMed  Google Scholar 

  • Swaminathan S, Horn TD, Pellowski D et al (2007) Nephrogenic systemic fibrosis, gadolinium, and iron mobilization. N Engl J Med 357:720–722

    Article  PubMed  CAS  Google Scholar 

  • Thurnher SA, Dorffner R, Thurnher MM et al (1997) Evaluation of abdominal aortic aneurysm for stent graft placement: comparison of gadolinium enhanced MR angiography versus helical CT angiography and digital subtraction angiography. Radiology 205:341–352

    Article  PubMed  CAS  Google Scholar 

  • Tirkes AT, Rosen MA, Siegelman ES (2003) Gadolinium susceptibility artifact causing false positive stenosis isolated to the proximal common carotid artery in 3D dynamic contrast medium enhanced MR angiography of the thorax – a brief review of causes and prevention. Int J Cardiovasc Imaging 19:151–155

    Article  PubMed  Google Scholar 

  • Vogt FM, Ajaj W, Hunold P et al (2004) Venous compression at high-spatial-resolution three-dimensional MR angiography of peripheral arteries. Radiology 233:913–920

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Waterford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Waterford, S.D., Knight, M., Khoynezhad, A. (2014). MRI for Interventions and Surgery. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37393-0_242-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37393-0_242-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37393-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics