Skip to main content
Log in

MRI Catheterization: Ready for Broad Adoption

  • Review Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

In recent years, interventional cardiac magnetic resonance imaging (iCMR) has evolved from attractive theory to clinical routine at several centers. Real-time cardiac magnetic resonance imaging (CMR fluoroscopy) adds value by combining soft-tissue visualization, concurrent hemodynamic measurement, and freedom from radiation. Clinical iCMR applications are expanding because of advances in catheter devices and imaging. In the near future, iCMR promises novel procedures otherwise unsafe under standalone X-Ray guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

iCMR:

Interventional cardiac magnetic resonance imaging

CMR:

Cardiac magnetic resonance imaging

MRI:

Magnetic resonance imaging

ECG:

Electrocardiogram

EP:

Electrophysiology

RF:

Radiofrequency

SAR:

Specific absorption rate

XFM:

X-Ray fused with MRI

References

  1. Razavi R, Hill DL, Keevil SF et al (2003) Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. The Lancet 362:1877–1882. https://doi.org/10.1016/S0140-6736(03)14956-2

    Article  Google Scholar 

  2. Rogers T, Ratnayaka K, Khan JM et al (2017) CMR fluoroscopy right heart catheterization for cardiac output and pulmonary vascular resistance: results in 102 patients. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-017-0366-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ratnayaka K, Kanter JP, Faranesh AZ et al (2017) Radiation-free CMR diagnostic heart catheterization in children. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-017-0374-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pushparajah K, Tzifa A, Bell A et al (2015) Cardiovascular Magnetic Resonance catheterization derived pulmonary vascular resistance and medium-term outcomes in congenital heart disease. J Cardiovasc Magn Reson 17:28. https://doi.org/10.1186/s12968-015-0130-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rogers T, Ratnayaka K, Karmarkar P et al (2016) Real-time magnetic resonance imaging guidance improves the diagnostic yield of endomyocardial biopsy. JACC Basic Transl Sci 1:376–383. https://doi.org/10.1016/j.jacbts.2016.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sommer P, Grothoff M, Eitel C et al (2013) Feasibility of real-time magnetic resonance imaging-guided electrophysiology studies in humans. Europace 15:101–108. https://doi.org/10.1093/europace/eus230

    Article  PubMed  Google Scholar 

  7. Raval AN, Telep JD, Guttman MA et al (2005) Real-time magnetic resonance imaging-guided stenting of aortic coarctation with commercially available catheter devices in swine. Circulation 112:699–706. https://doi.org/10.1161/CIRCULATIONAHA.105.542647

    Article  PubMed  PubMed Central  Google Scholar 

  8. Esch JJ, Shah PB, Cockrill BA et al (2013) Transcatheter Potts shunt creation in patients with severe pulmonary arterial hypertension: initial clinical experience. J Heart Lung Transplant 32:381–387. https://doi.org/10.1016/j.healun.2013.01.1049

    Article  PubMed  Google Scholar 

  9. Muthurangu V, Atkinson D, Sermesant M, et al (2005) Measurement of total pulmonary arterial compliance using invasive pressure monitoring and MR flow quantification during MR-guided cardiac catheterization. Am J Physiol Heart Circ Physiol. https://doi.org/10.1152/ajpheart.00957.2004

  10. Kleinerman RA (2006) Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol 36:121–125. https://doi.org/10.1007/s00247-006-0191-5

    Article  PubMed  PubMed Central  Google Scholar 

  11. Johnson JN, Hornik CP, Li JS et al (2014) Cumulative radiation exposure and cancer risk estimation in children with heart disease. Circulation 130:161–167. https://doi.org/10.1161/CIRCULATIONAHA.113.005425

    Article  PubMed  PubMed Central  Google Scholar 

  12. Andreassi MG, Ait-Ali L, Botto N, et al (2006) Cardiac catheterization and long-term chromosomal damage in children with congenital heart disease. Eur Heart J 27:2703–2708. https://doi.org/10.1093/eurheartj/ehl014

  13. Beels L, Bacher K, De Wolf D et al (2009) γ-H2AX foci as a biomarker for patient X-ray exposure in pediatric cardiac catheterization: are we underestimating radiation risks? Circulation 120:1903–1909. https://doi.org/10.1161/CIRCULATIONAHA.109.880385

    Article  CAS  PubMed  Google Scholar 

  14. Tamer E-S, Patel AS, Cho JS et al (2017) Radiation-induced DNA damage in operators performing endovascular aortic repair. Circulation 136:2406–2416. https://doi.org/10.1161/CIRCULATIONAHA.117.029550

    Article  CAS  Google Scholar 

  15. Kakareka JW, Faranesh AZ, Pursley RH et al (2018) Physiological recording in the MRI environment (PRiME): MRI-compatible hemodynamic recording system. IEEE J Transl Eng Health Med 6:4100112. https://doi.org/10.1109/JTEHM.2018.2807813

    Article  PubMed  Google Scholar 

  16. Mazal JR, Rogers T, Schenke WH et al (2016) Interventional-cardiovascular MR: role of the interventional MR technologist. Radiol Technol 87:261–270

    PubMed  PubMed Central  Google Scholar 

  17. Deutsch N, Swink J, Matisoff AJ et al (2019) Anesthetic considerations for magnetic resonance imaging-guided right-heart catheterization in pediatric patients: a single institution experience. Pediatr Anesth 29:8–15. https://doi.org/10.1111/pan.13512

    Article  Google Scholar 

  18. Knight DS, Kotecha T, Martinez-Naharro A et al (2019) Cardiovascular magnetic resonance-guided right heart catheterization in a conventional CMR environment: predictors of procedure success and duration in pulmonary artery hypertension. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 21:57. https://doi.org/10.1186/s12968-019-0569-9

    Article  Google Scholar 

  19. Olivieri LJ, Cross RR, O’Brien KE et al (2015) Optimized protocols for cardiac magnetic resonance imaging in patients with thoracic metallic implants. Pediatr Radiol 45:1455–1464. https://doi.org/10.1007/s00247-015-3366-0

    Article  PubMed  Google Scholar 

  20. Rogers T, Lederman RJ (2015) Interventional CMR: clinical applications and future directions. Curr Cardiol Rep 17:31. https://doi.org/10.1007/s11886-015-0580-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schmidt EJ, Watkins RD, Zviman MM et al (2016) A magnetic resonance imaging-conditional external cardiac defibrillator for resuscitation within the magnetic resonance imaging scanner bore. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.116.005091

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ratnayaka K, Faranesh AZ, Guttman MA et al (2008) Interventional cardiovascular magnetic resonance: still tantalizing. J Cardiovasc Magn Reson 10:62. https://doi.org/10.1186/1532-429X-10-62

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dick AJ, Guttman MA, Raman VK et al (2003) Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation 108:2899–2904. https://doi.org/10.1161/01.CIR.0000095790.28368.F9

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hilbert S, Sommer P, Gutberlet M et al (2016) Real-time magnetic resonance-guided ablation of typical right atrial flutter using a combination of active catheter tracking and passive catheter visualization in man: initial results from a consecutive patient series. Europace 18:572–577. https://doi.org/10.1093/europace/euv249

    Article  PubMed  Google Scholar 

  25. Ratnayaka K, Faranesh AZ, Hansen MS et al (2013) Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur Heart J 34:380–389. https://doi.org/10.1093/eurheartj/ehs189

    Article  PubMed  Google Scholar 

  26. Velasco Forte MN, Pushparajah K, Schaeffter T et al (2017) Improved passive catheter tracking with positive contrast for CMR-guided cardiac catheterization using partial saturation (pSAT). J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-017-0368-0

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yildirim KD, Basar B, Campbell-Washburn AE, et al (2019) A cardiovascular magnetic resonance (CMR) safe metal braided catheter design for interventional CMR at 1.5 T: freedom from radiofrequency induced heating and preserved mechanical performance. J Cardiovasc Magn Reson 21:16. https://doi.org/10.1186/s12968-019-0526-7

  28. Basar B, Rogers T, Ratnayaka K et al (2015) Segmented nitinol guidewires with stiffness-matched connectors for cardiovascular magnetic resonance catheterization: preserved mechanical performance and freedom from heating. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-015-0210-5

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sonmez M, Saikus CE, Bell JA et al (2012) MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety. J Cardiovasc Magn Reson 14:38. https://doi.org/10.1186/1532-429X-14-38

    Article  PubMed  PubMed Central  Google Scholar 

  30. Campbell-Washburn AE, Rogers T, Stine AM, et al (2018) Right heart catheterization using metallic guidewires and low SAR cardiovascular magnetic resonance fluoroscopy at 1.5 Tesla: first in human experience. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-018-0458-7

  31. Kholmovski EG, Coulombe N, Silvernagel J et al (2016) Real-time MRI-guided cardiac cryo-ablation: a feasibility study. J Cardiovasc Electrophysiol 27:602–608. https://doi.org/10.1111/jce.12950

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lichter J, Kholmovski EG, Coulombe N et al (2019) Real-time magnetic resonance imaging-guided cryoablation of the pulmonary veins with acute freeze-zone and chronic lesion assessment. EP Europace 21:154–162. https://doi.org/10.1093/europace/euy089

    Article  Google Scholar 

  33. Elbes D, Magat J, Govari A et al (2017) Magnetic resonance imaging-compatible circular mapping catheter: an in vivo feasibility and safety study. Europace 19:458–464. https://doi.org/10.1093/europace/euw006

    Article  PubMed  Google Scholar 

  34. Halabi M, Faranesh AZ, Schenke WH et al (2013) Real-time cardiovascular magnetic resonance subxiphoid pericardial access and pericardiocentesis using off-the-shelf devices in swine. J Cardiovasc Magn Reson 15:61. https://doi.org/10.1186/1532-429X-15-61

    Article  PubMed  PubMed Central  Google Scholar 

  35. Arepally A, Karmarkar PV, Weiss C et al (2005) Magnetic resonance image-guided trans-septal puncture in a swine heart. J Magn Reson Imaging 21:463–467. https://doi.org/10.1002/jmri.20262

    Article  PubMed  Google Scholar 

  36. Lossnitzer D, Seitz SA, Krautz B et al (2015) Feasibility of real-time magnetic resonance imaging-guided endomyocardial biopsies: an in-vitro study. World J Cardiol 7:415–422. https://doi.org/10.4330/wjc.v7.i7.415

    Article  PubMed  PubMed Central  Google Scholar 

  37. Simonetti OP, Rizwan A (2017) Low-field cardiac magnetic resonance imaging. Circ Cardiovasc Imaging 10:e005446. https://doi.org/10.1161/CIRCIMAGING.117.005446

    Article  PubMed  PubMed Central  Google Scholar 

  38. Campbell-Washburn AE, Ramasawmy R, Restivo MC et al (2019) Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. Radiology 293:384–393. https://doi.org/10.1148/radiol.2019190452

    Article  PubMed  Google Scholar 

  39. Pandya B, Quail MA, Steeden JA et al (2014) Real-time magnetic resonance assessment of septal curvature accurately tracks acute hemodynamic changes in pediatric pulmonary hypertension. Circ Cardiovasc Imaging 7:706–713. https://doi.org/10.1161/CIRCIMAGING.113.001156

    Article  PubMed  Google Scholar 

  40. Aphrodite T, Krombach GA, Nils K et al (2010) Magnetic resonance-guided cardiac interventions using magnetic resonance-compatible devices. Circ Cardiovasc Interv 3:585–592. https://doi.org/10.1161/CIRCINTERVENTIONS.110.957209

    Article  Google Scholar 

  41. Abu Hazeem AA, Dori Y, Whitehead KK et al (2014) X-ray magnetic resonance fusion modality may reduce radiation exposure and contrast dose in diagnostic cardiac catheterization of congenital heart disease. Catheter Cardiovasc Interv 84:795–800. https://doi.org/10.1002/ccd.25473

    Article  PubMed  Google Scholar 

  42. Glöckler M, Halbfaβ J, Koch A et al (2013) Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease: a single-center, retrospective analysis of 78 cases. Catheter Cardiovasc Interv 82:436–442. https://doi.org/10.1002/ccd.24646

    Article  PubMed  Google Scholar 

  43. Grant EK, Kanter JP, Olivieri LJ et al (2019) X-ray fused with MRI guidance of pre-selected transcatheter congenital heart disease interventions. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.28324

    Article  PubMed  PubMed Central  Google Scholar 

  44. Grant EK, Faranesh AZ, Cross RR et al (2015) Image fusion guided device closure of left ventricle to right atrium shunt. Circulation 132:1366–1367. https://doi.org/10.1161/CIRCULATIONAHA.115.013724

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ratnayaka K, Raman VK, Faranesh AZ et al (2009) Antegrade percutaneous closure of membranous ventricular septal defect using X-ray fused with magnetic resonance imaging. JACC Cardiovasc Interv 2:224–230. https://doi.org/10.1016/j.jcin.2008.09.014

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rickers C, Jerosch-Herold M, Hu X et al (2003) Magnetic resonance image-guided transcatheter closure of atrial septal defects. Circulation 107:132–138. https://doi.org/10.1161/01.cir.0000039343.95540.cf

    Article  PubMed  Google Scholar 

  47. Cunningham KS, Veinot JP, Butany J (2006) An approach to endomyocardial biopsy interpretation. J Clin Pathol 59:121–129. https://doi.org/10.1136/jcp.2005.026443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ratnayaka K, Saikus CE, Faranesh AZ et al (2011) Closed-chest transthoracic magnetic resonance imaging-guided ventricular septal defect closure in swine. JACC Cardiovasc Interv 4:1326–1334. https://doi.org/10.1016/j.jcin.2011.09.012

    Article  PubMed  PubMed Central  Google Scholar 

  49. Krueger JJ, Ewert P, Yilmaz S et al (2006) Magnetic resonance imaging-guided balloon angioplasty of coarctation of the aorta: a pilot study. Circulation 113:1093–1100. https://doi.org/10.1161/CIRCULATIONAHA.105.578112

    Article  PubMed  Google Scholar 

  50. Christopher P, Matthias G, Thomas G et al (2013) Cavotricuspid isthmus ablation guided by real-time magnetic resonance imaging. Circ Arrhythm Electrophysiol 6:e7–e10. https://doi.org/10.1161/CIRCEP.112.973719

    Article  Google Scholar 

  51. Paetsch I, Sommer P, Jahnke C et al (2019) Clinical workflow and applicability of electrophysiological cardiovascular magnetic resonance-guided radiofrequency ablation of isthmus-dependent atrial flutter. Eur Heart J Cardiovasc Imaging 20:147–156. https://doi.org/10.1093/ehjci/jey143

    Article  PubMed  Google Scholar 

  52. Dickfeld T, Tian J, Ahmad G et al (2011) MRI-Guided ventricular tachycardia ablation: integration of late gadolinium-enhanced 3D scar in patients with implantable cardioverter-defibrillators. Circ Arrhythm Electrophysiol 4:172–184. https://doi.org/10.1161/CIRCEP.110.958744

    Article  PubMed  Google Scholar 

  53. Grant EK, Berul CI, Cross RR et al (2017) Acute cardiac MRI assessment of radiofrequency ablation lesions for pediatric ventricular arrhythmia: feasibility and clinical correlation. J Cardiovasc Electrophysiol 28:517–522. https://doi.org/10.1111/jce.13197

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mukherjee RK, Whitaker J, Williams SE et al (2018) Magnetic resonance imaging guidance for the optimization of ventricular tachycardia ablation. Eur Eur Pacing Arrhythm Card Electrophysiol J Work Groups Card Pacing Arrhythm Card Cell Electrophysiol Eur Soc Cardiol 20:1721–1732. https://doi.org/10.1093/europace/euy040

    Article  Google Scholar 

  55. Rogers T, Mahapatra S, Kim S et al (2016) Transcatheter myocardial needle chemoablation during real-time magnetic resonance imaging: a new approach to ablation therapy for rhythm disorders. Circ Arrhythm Electrophysiol. https://doi.org/10.1161/CIRCEP.115.003926

    Article  PubMed  PubMed Central  Google Scholar 

  56. Barbash IM, Saikus CE, Faranesh AZ et al (2011) Direct percutaneous left ventricular access and port closure: pre-clinical feasibility. JACC Cardiovasc Interv 4:1318–1325. https://doi.org/10.1016/j.jcin.2011.07.017

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rogers T, Ratnayaka K, Schenke WH et al (2015) Fully percutaneous transthoracic left atrial entry and closure as a potential access route for transcatheter mitral valve interventions. Circ Cardiovasc Interv. https://doi.org/10.1161/CIRCINTERVENTIONS.114.002538

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ratnayaka K, Rogers T, Schenke WH et al (2016) Magnetic resonance imaging-guided transcatheter cavopulmonary shunt. JACC Cardiovasc Interv 9:959–970. https://doi.org/10.1016/j.jcin.2016.01.032

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ratnayaka K, Moore JW, Rios R et al (2017) First-in-human closed-chest transcatheter superior cavopulmonary anastomosis. J Am Coll Cardiol 70:745–752. https://doi.org/10.1016/j.jacc.2017.06.020

    Article  PubMed  PubMed Central  Google Scholar 

  60. Goreczny S, Moszura T, Dryzek P et al (2017) Three-dimensional image fusion guidance of percutaneous pulmonary valve implantation to reduce radiation exposure and contrast dose: a comparison with traditional two-dimensional and three-dimensional rotational angiographic guidance. Neth Heart J Mon J Neth Soc Cardiol Neth Heart Found 25:91–99. https://doi.org/10.1007/s12471-016-0941-4

    Article  CAS  Google Scholar 

Download references

Funding

Funding was funded by National Heart, Lung, and Blood Institute (Grant No: Z01-HL005062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanishka Ratnayaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nageotte, S.J., Lederman, R.J. & Ratnayaka, K. MRI Catheterization: Ready for Broad Adoption. Pediatr Cardiol 41, 503–513 (2020). https://doi.org/10.1007/s00246-020-02301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-020-02301-6

Keywords

Navigation